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Abstract

IV. Abstract

The number of bio-chemical systems and processes that are able to be
modeled and understood using computational chemistry tools is ever
growing and the boundaries of feasible simulations are continuously
extended. This is made possible by a tandem of steadily increasing
computer power and the development of new methodologies and their
ever more efficient implementations in commonly available software
packages. In this thesis, I employ this tandem to deepen our under-
standings on two processes that happen on very different size and length
scales, the Grignard reaction and its associated Schlenk-Equlibrium as
well as the self-assembly of a protein nanoparticle.

In chapter 1 and 2 of this thesis I revisit the fundamental, theoretical
advances made in computational chemistry that allow us to model a
broad range of applications and give an overview over what kind of
systems one can expect to be able to model using the state-of-the-art
computational chemistry as well as their associated methodology.

In Chapter 3 I investigate the Schlenk-Equilibrium, a complex reaction
that governs the presence of multiple chemical species in solution
of the Grignard reagents, and that has been known since the 1920s,
but has not been fully characterized to this day due to its complexity.
Using ab initio molecular dynamics simulations with enhanced-sampling
metadynamics it was possible to determine the reaction pathway of
the Schlenk-equilbirium reaction of the Grignard reagent CH3MgCl
in explicit tetrahydrofuran solvent and to characterize more precisely
the chemical species at equilbirium. Furthermore, I found that the
propagation of the reaction may only occur via specific solvation state
of each of the different aggregates. Describing the solvent dynamics
explictly is thus key to fully understanding the mechanism of the
Schlenk-Equilbrium reaction.

In Chapter 4 I investigate the competition of the radical and the
nucleophilic addition pathway of the Grignard. Radical formation ener-
gies for complexes with different substrates were estimated by density
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functional theory after benchmarking over coupled cluster data. The
nucleophilic attack mechanism was investigated by ab initio molecular
dynamics in explicit tetrahydrofuran solvent. I find that the initial step
of the radical reaction involves binding of the substrate to the magne-
sium and the subsequent release of a radical organic group. Regardless
of the nature of the substrate and the solvation of the magnesium,
the unpaired electron localizes on the substrate and the reaction is
promoted by stabilisation of the radical, while nucleophilic addition is
promoted by the fraction of the dialkyl-magnesium species produced
by the Schlenk equilibrium. As a consequence, the nucleophilic addi-
tion is favored for alkyl-carbonyl species, while the radical mechanism
becomes energetically favorable for extended aromatic moieties. This
finding might aid the design of future metalloorganic catalysts in the
homogeneous phase.

In Chapter 5 I study the self assembly of α-tocopherol transfer protein,
which responsible for the retention of Vitamin E in the human body,
into nanoparticles. Using Monte Carlo simulations on a patchy particle
model it was possible to determine the kinetics and thermodynamics of
the self aggregation this protein. The oligomerization kinetics proceeds
in two steps with the formation of metastable trimeric unit, and the
subsequent assembly into spherical constructs. I was able to determine a
direct relationship between the stability of the protein-protein interfaces
formed during the oligomerisation process, the temperature of the
system and the predominant oligomerisation state found in experimental
studies. From this observation, I was able to establish predictions on
the influence of specific protein modifications on the self-aggregation
state of the protein.

VI



1. Background and
Introduction

Modern Computational Chemistry goes hand in hand with experiments
and is able to give insight into processes that are more accurately
or more efficiently described using computer simulations. Such sim-
ulations have for example been successfully applied to modeling the
folding of proteins [1], designing new materials [2] and predicting protein
structures [3] as well as reactivity trends [4].

Despite the fact that computational chemistry models have proven ex-
cellent tools to explore and predict fundamental processes, the majority
of the experiments, especially in the condensed phase, are carried out
on much larger scales than those accessible to computational chemistry.

To gap between experimental and computational dimensionalities can
be understood by a simple Gedankenexperiment: Thinking of an simple
solution containing merely 10 ml of water, the number of atoms that
would have to be simulated is on the order of avogradro’s number (1024).
If we were able to describe a system by the position and velocity of each
atom stored to 7 decimal places, we would require 6 bytes of memory
storage per atom. For a single simulation frame we would thus require
6 yotabyte (1024 byte) of memory storage, which exceeds by orders of
magnitude the data storage capability of the whole planet.

In a computational approach, one does not try to reproduce the whole
experiment, but rather to build a reliable model including all the relevant
microscopic features that give rise to the macroscopic properties of the
system.

1



BACKGROUND AND INTRODUCTION

In this introduction I will address the following fundamental issues:
What is the link between a macroscopic measurement and the micro-
scopic behavior of the system?

What kind of experimental systems can be described using state-of-the-
art computational chemistry methods?

1.1. Macroscopic vs microscopic
representation

Since atomic theory became widely accepted in the 19th century, it has
been known that our world is made up of atomistic particles rather
than the continuum we experience. Later, through the formulation of
statistical mechanics, it became evident that macroscopic observations
(such as temperature and pressure) are related to the microscopic
state of the system subject to microscopic variables (particle positions
and momenta). The microscopic state is not steady, but it is rather
constituted by an ensemble of states that continuously interconvert into
each other. The introduction of statistical mechanics thus connected
macroscopic quantities (such as heat capacity) to the miscroscopic
behavior of the system. Experimental measurements are, in general,1
such macroscopic observations taken over a large number of molecules
over a finite time. Because the time scales of experimental measurement
are much larger than the time spent in each microstate, it can be
assumed that the system visits all accessible microstates during the
experiment.

The exact relation between the measured, macroscopic observable and
its microscopic representation is that the macroscopic observable 〈O〉
is the average obtained from weighing the microscopic observable value
O for each microstate with the probability P that the same microstate
is visited during the measurement:

1excluding extremely fast or extremely probed measurements
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Macroscopic vs microscopic representation

〈O〉 =

∫
O({r}, {p})P({r}, {p})dΓ (1.1.1)

with dΓ indicating integration over all microstates described by positions
r and momenta p. P is determined by the specific thermodynamics
equilbirum the system is subject to. For example, for a system at
thermal equilibrium with an external bath, P is given by the Boltzmann
distribution of states. For a system of states α with energy levels Eα

at a given temperature T the probability of each state is given by:

Pα =
1

Z
e−βEα, (1.1.2)

where β = 1
kBT

, kB is the Boltzmann’s constant, and Z is the partition
function of the system defined as:

Z =
1

N !

∫
e−βH({r},{p})dΓ. (1.1.3)

This integral in equation 1.1.1 implies a complicated mathematical
integral of 6N dimensions, where N is the number of particles in the
system, which cannot be solved analytically. Due to the large dimen-
sionality of the integral, simple direct numerical integration methods
are also not feasible. For example, imagining numerical integration over
a regular grid containing n mesh points per dimension, it would be
necessary to estimate the value of the integrand function over a total
of n6N grid points.

In fact, the Boltzmann weight (equation 1.1.2) guarantees that only
the states with minimal energy have a non-negligible weight, while all
the others become exponentially marginal. It is therefore possible to
exploit this condition to introduce numerical methods able to efficiently
sample only the relevant microstates that contribute the macroscopic
behavior of the system.
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BACKGROUND AND INTRODUCTION

1.2. Computational estimation methods

Different computational tools have been developed to obtain numerical
approximations to the integral in equation 1.1.1. The two most broadly
applied approaches are Monte Carlo (MC) and Molecular Dynamics
(MD) simulations. In the following I will in turn introduce the theory
behind both approaches.

1.2.1. The Monte Carlo Method

The main idea of MC is to exploit the knowledge of the relative prob-
ability of each state according to the underlying statistical ensemble.
The sampling of the microscopic states is achieved by making random
changes to the microscopic variables of the system. The newly ob-
tained states are weighted through a probability algorithm such that
the final accumulation of microstates represents the target probability
distribution. The algorithm is explained in detail in Section 2.3.

For example, under canonical conditions (constant volume, temperature
and number of particles) the relative probability of two microstates of
energies E1 and E2 becomes:

Prel = e−β(E1−E2) (1.2.1)

In MC simulations the probability to sample any microstate is thus
linked to its energy. This implied that the algorithm needs the estima-
tion of the total energy of the system at any step of the simulation to
proceed.

4



Computational estimation methods

1.2.2. Molecular Dynamics

Another approach to generating a probabilistically correct representa-
tion of the microstates that give rise to the macroscopic observables is
founded on the Birkhoff’s ergodic theorem, which states

〈O〉 = lim
τ→∞

1

τ

∫ τ

0

O(t)dt (1.2.2)

Thus by simulating the time evolution of the system one can similarly
obtain the desired observable.

The computational tool based on this approach is Molecular Dynamics
(MD). By probing the time-evolution of the system that give rise to
the probability distribution of microstates, MD simulations provide not
only access to the macroscopic observables of equilibrium systems, but
also an in-depth dynamics description of microscopic events.

For a mechanical systems obeying the laws of classical mechanics, the
time evolution of the system is determined by Newton’s equation of
motion:

F = ma (1.2.3)

where F is the force, m the particle mass and a is the acceleration.

The forces F (R) acting on the particle at coordinates R is related to
the energy Eel(R) by

F (R) = −∇Eel(R) (1.2.4)

For a system of N atoms, solving the Newton’s EOMs imply solving a
system of 3N differential equations that require numerical integration
through iterative algorithms. (Introduced in detail in Section 2.4)

In summary the MC and MD algorithms follow the flowcharts depicted
below.
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BACKGROUND AND INTRODUCTION

Figure 1.1. – Flowcharts describing the basic algorithm for MC (left) and
MD (right) simulations.

Both algorithms require the calculation of either the energy (MC) or the
gradient of the energy (MD) in every iteration. Because, the number of
iterations required is generally extremely large, these steps constitute
the main expense of the respective computational methods.

Evaluation of the Energy for a Molecular System At a funda-
mental level any molecular system is described by quantum mechanics
(QM). Accordingly, the energy of any microstate is obtained by solving
the time-independent Schrödinger equation.

ĤΨ(R, r) = EΨ(R, r) (1.2.5)

where Ĥ is the Hamiltonian operator acting on Ψ(R, r) is the wave
function representing the state of the system dependent on the nuclear
coordinates R and electron coordinates r. The probability amplitude
of finding the system in its corresponding state is the square modules
of the wave function.

For a molecular system the Hamiltonian operator has the form:

Ĥ = T̂N + V̂ee + V̂Ne + V̂NN = T̂N + Ĥel (1.2.6)

6
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where T denotes kinetic and V potential energy terms, with N and
e indicating nuclei and electrons, respectively. Ĥel takes into account
all contributions to the Hamiltonian operator except for the kinetic
energy of the nuclei. The Schrödinger equation is a 3M-dimensional
eigenvalue problem (M being the total number of electrons and nuclei
in the system) for a second order partial differential equation that is
not solvable analytically for more than two particles. Therefore, this
problem has to be addressed by numerical approaches.

A typical approximation to the above eigenvalue problem is based
on separating adiabatically the motion of the nuclei from that of the
electrons. This assumption is based on the fact that electrons are
much lighter particles and therefore can respond much more rapidly
to the motion of the heavier nuclei. The Born-Oppenheimer (BO)
approximation, based of this assumption, allows for the factorization of
the wavefunction in two, electronic and nuclear, components:

Ψ(R, r) = Φ(r;R)χ(R) (1.2.7)

where χ(R) describes the behavior of the nuclei, and Φ(r;R), which
depends only parametrically on the nuclear coordinates, describes the
electronic state of the system. Φ(r;R) is obtained by solving the
Schrödinger equation for fixed nuclei:

ĤelΦ(r;R) = Eel(R)Φ(r;R) (1.2.8)

while the nuclei move on a potential energy surface defined by the
electronic eigenvalue Eel(R):

[T̂N + Eel(R)]χ(R) = Eχ(R) (1.2.9)

I will cover the BO approximation in more detail in Section 2.4.1.
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BACKGROUND AND INTRODUCTION

Evaluating the energy gradients Approximating the motion of
the nuclei to that of classical particles, the determination of a MD
trajectory implies the calculation of the forces acting on the nuclei in
the system. The QM force F (R) acting on a nucleus at a coordinate
R is obtained from the energy Eel(R) by the gradient operation:

F (R) = −∇Eel(R) (1.2.10)

Which can be further simplified as

∇Eel(R) =
〈

Φ(R)
∣∣∣∇Ĥel(R)(λ)

∣∣∣Φ(R)
〉

(1.2.11)

thanks to the Hellman-Feynman theorem (details in next chapter).

As evident from the Hellman-Feynman theorem, when treating the
system at a QM level of theory, it is necessary to compute the wave
function and the electronic energy of the system at every iteration step.
Because it is necessary to iterate this procedure over a large number
of steps in order to obtain a reliable representation of the relevant
microstates, this step becomes the computationally most crucial step
and we must evaluate the many-electron problem in a computationally
efficient way.

Approximations to the evaluation of the wave function Dif-
ferent theories and approximations have been developed to deal with
the above many-electron problem. In this thesis I employed Density
Functional Theory (DFT) [5,6] and Coupled Cluster Theory (CC) [7,8],
which will be presented in detail in the next chapter. CC is an excellent
tool for high accuracy QM calculations. The CCSD(T) method is
often regarded as the gold standard in quantum chemistry. However
the CCSD(T) calculation costs scale as N 7 with N the number of
electrons in the system. This makes CC approaches not feasible for
large molecular systems or for iterative procedures like MC or MD.

8
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DFT is the most popular approach to solve the many-body problem
of the Schrödinger equation in MD. The main idea of DFT is the
assumption that the ground-states properties of a quantum system of
N particles can be described by its density rather than its wavefunc-
tion. Therefore, these properties can be obtained from a 3-dimensional
function ρ(r), rather than a 3N dimensional function:

ρ(r) = N

∫
|Φ(r1, r2, ..., rN)|2dr2dr3drN (1.2.12)

DFT based methods generally scale with O(N 3) with N the number
of electrons in the system, because one has to ultimately diagonalize
a Hamiltonian of dimension proportional to the number of electrons.
The digitalization operation scales as O(N 3). In reality the application
of DFT includes multiple steps and comes in different implementations,
which can further reduce the scaling of DFT methods. I will discuss
some of those in more detail in the Methods section. In comparison
to methods such as CCSD(T) the advantage is that DFT is compu-
tationally less expensive, however the results are less accurate. For
various properties the accuracy of different quantum mechanical meth-
ods has been benchmarked, for example for magnetizabilities [9] and
NMR shielding constants [10]

The fully quantum mechanical treatment is to date only feasible for
systems up to about 104 atoms in size due to wave function based
methods scaling with least N 3 with N the number of electrons in the
simulation.

1.2.3. Molecular Mechanics models

The simulation of larger systems can be achieved by introducing sim-
plified models that profit from the definition of analytical expressions
for both the energy and the forces. Such molecular mechanics (MM)
models describe all intermolecular as well as intramolecular interactions

9



BACKGROUND AND INTRODUCTION

using simple harmonic-like, parameterized terms to represent molecular
vibrations, and two-body terms for the intermolecular forces. A detailed
explanation of the forces and their parameters is presented in Appendix
D. In general the parameters of the potentials are derived by fitting
them in such a way that they to reproduce accurate QM simulations
of calibration systems as well as on large amounts of experimental
data. [11–14]

The MM approach couples the speed-up through analytical determina-
tion of the relevant energy of force quantities to the better scalability
determined by the intermolecular forces, which is in principle propor-
tional to N 2. In fact, such scaling can be further improved by the
introduction of protocols like long-range cut-off, pair-list update and
reciprocal space calculations. [15] Classical MD works well under the
assumption that the BO approximation is valid, and the electronic
structure is not largely affected. For example, the molecular motion
does not produce any chemical bond breaking or forming, or does not
induce significant variations in the polarization of the system.

1.3. Current state of the art in
simulations

Chemical and biological reactions occur at very different time scales,
ranging from femto-second to seconds. Much effort has been devoted to
developing robust mathematical and physical computational methods
in order to simulate and understand these processes. With increasing
computing power it is possible to simulate ever-larger systems with ever-
higher precision methods. However, there are still practical limitations
(time and resources) to what kind of detailed description is available
for a system of a certain size.

Iterative algorithm approaches still face two more bottlenecks. Firstly,
the energy or the forces have to be calculated at any iteration of the

10
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algorithm (MC or MD). Secondly, in order to be numerically stable, at
each iteration the new microstate produced can only be very close the
previous one. In fact, in MC algorithms any new random microstate
is produced by consecutive perturbative changes, while in MD each
frame of a trajectory is separated in time by just a small integration
time-step ∆t. As a matter of facts, in both algorithms, a thorough
exploration of the phase-space may require iteration over 108−10 steps
or more. The total computational time necessary for any simulations
is thus the product of the time spent to compute the energy or the
energy gradients with the limitation in producing sufficiently different
new configurations.

Restricting this analysis to MD (even though a similar reasoning stands
for MC), the time step in QM is determined by the nuclear motion
and relaxation of the electrons, in MM the time step must be chosen
such that the numerical integration of the equation of motion conserves
energy as well as numerical stability and accuracy. In order to guarantee
these criteria are met, the time step must typically be at least one
order of magnitude smaller than the fastest motion in the system and
depends on the properties of interested. A common choice of the time
step when using MM models is 1-2 fs. Thus, a time window of 1 µs
requires integration of the equations of motion over 109 iterations.

Despite the fact, that such time intervals are becoming feasible today,
characteristic times driving phenomena in large-scale macromolecular
systems like biomolecular complexes in the multi-phase can easily exceed
such timescales.

A good overview of which methods are applicable for certain time-
and size-scales is given in Figure 1.2. It shows various bottom-up
approaches, in which the approach is to describe the system of interest
using computational tools based on the underlying levels of the physical
hierarchy.
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BACKGROUND AND INTRODUCTION

Figure 1.2. – Accessible time- and length-scales for state-of-the-art Bottom-up
computational approaches. The figure is taken from [16]

Non-dynamics processes that require very high accuracy are explored
using static calculations. The most fundamental dynamical processes
are captured using ab-initio molecular dynamics approaches. The
system is described using quantum mechanical methods and spans
scales of up to ∼ 103 atoms and ∼ 10−12-10−10 s. [17]

In the case that the system under investigation is very large, but a QM
treatment of part of the system is required, it is possible to adopt mixed
quantum mechanics/molecular mechanics description of the system.
In QM/MM the central idea is to treat the chemically active part of
the system using QM, whereas the majority of the simulation (mostly
solvent) is treated on a MM level of theory. [18] The computational
restrictions for this approach are mostly determined by the same ones
of the respective QM and MM regions. The QM/MM method has been
particularly successful in describing enzymatic catalysis, [19] and it has
been acknowledged with the Nobel prize in chemistry in 2013.
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Current state of the art in simulations

The largest number of MD simulations to date are carried out using a
molecular MM description of the interatomic forces. Such approaches
have been successfully applied to large molecular systems, up to ∼ 106

atoms and ∼ 10−9-10−4 s. [20,21] For example, MM models have been
used to describe the HIV-1 capsid (64 million atoms) [22] or protein
folding events over time lengths in the millisecond. [23]

Coarse-grained methods In order to break the bottlenecks present
in simulations adopting all-atom models, further simplifications can be
introduced. Coarse-graining (CG) is one approach that has gained a lot
of popularity in the last decades. In CG, multiple atoms are mapped
into one single interaction site, typically referred to as bead (Figure 1.3).

Figure 1.3. – In coarse-graining multiple atoms are summarized as a single
site. The particles properties represent an average of interactions between the
coarse-grained atoms and the environment. Adapted from [24]

Beads interact via effective model potentials that are built following
different principles. In a flavor of CG modeling, the atoms that are
mapped into one bead are chosen such that the same bead can represent
well certain physical and chemical properties of the group atoms in
the surrounding environment. Interaction parameters can trained
upon specific physical properties from MM models or taken directly to

13



BACKGROUND AND INTRODUCTION

reproduce experimental data. These CG models have been successfully
applied on molecular systems up to several millions of atoms on effective
time scales reaching the order of 1 s. [25–37]

Other CG approaches do not aim for describing the system in its general
features, rather the interest lies within describing specific aspects of
the system under investigation, trying to minimize the computational
complexity of the representation. Such so-called toy models guarantee
a qualitative good estimate of the relevance of specific characteristics
for the emergence of any properties of interest, rather than a realistic
description of the global behavior of the system.

An example for such family of models is the one of patchy particle
(PP) models, one of which was used in this thesis to simulate the
self-assembly of a protein nano-sphere. From a methodological point
of view PP simulation models are all based on "mesoscopic particles,
[that are] characterized by a repulsive core and a discrete number of
short-range and highly directional interaction sites". [38] As indicated by
this broad definition patchy particle models come in various shapes of
implementations for various applications have been applied successfully
for example, to model double stranded DNA [39], proteins [40–42]. A good
overview of the general methodology is given in [38] and of patchy models
of protein assembly in [40].

The choice between the different presented tools when modeling a
molecular system is a constant wager of accuracy against computational
efficiency. Often, more than one method might be applicable to the
chemical or biological system at hand. It requires insight into the
problem under investigation to identify the relevant properties of the
system to be given special attention to and thus choose the optimal
computational tool for investigation.

In this thesis I will present two examples about how the use of method-
ologies at very different resolutions allows to address complex (bio)chemical
problems at very different time and scale dimensionalities.

14



2. Methods

In this Chapter I will introduce the methodological background of
this thesis. I will first describe Quantum Mechanical methods, then I
will introduce Monte Carlo, and Molecular Dynamics simulations. For
each of these methods I will present the detailed computational tools
required for their implementation. The chapter is concluded with a
summary of the enhanced sampling methods applied throughout the
thesis. The specific parameter choices and computational setup used for
the different applications will be detailed in their respective chapters.

2.1. Quantum Mechanical Methods

As presented in the Introduction, quantum mechanical methods require
the solution of the electronic Hamiltonian in equation 1.2.8, which
explicitly written as:

Ĥel = −
N∑
i=1

~2

2m
∇2
i −

e2

4πε0

N∑
i=1

M∑
k=1

Zk
Rik

+
e2

4πε0

N∑
i<j

1

rij
+

e2

4πε0

M∑
k<l

ZkZl
Rkl

(2.1.1)
where the first term is the kinetic energy operator, the second term is
the nuclei-electron interaction and the last term represents the electron-
electron repulsion. The first two terms are sums of single-particle
operators, while the electron-electron interaction is a pair interaction.
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To simplify for later use we can use:

Ĥel =
∑
i

ĥ1(x) +
1

2

∑
i6=j

ĥ2(xi,xj) (2.1.2)

Because we cannot solve the corresponding eigenvalue problem for more
than two electrons, we must use numerical approximation methods.

2.1.1. Wave function based methods

Wave function based methods make use of the variational theorem which
states that the expectation value for the energy of any trial function
will also be greater or equal to the ground-state energy of the true
solution to the Schrödinger equation. Therefore, we can approximate
the solutions by minimizing the expectation value of the energy of a
trial function, dependent on a set of free parameters.

Hartree-Fock approach One of the earliest variational approaches
is the Hartree-Fock (HF) method. Its main idea is to approximate the
real wavefunction as a product of single-particle spin orbitals.

Ψ(1, 2, 3, ..., N) = χ1(2), χ2(2)...χN(N) (2.1.3)

In order to satisfy the antisymmetry requirement for Fermi particles, the
wavefunction is written using a Slater determinant, which conveniently
captures all the permutations of the single-electron orbitals.

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)

... ... . . . ...
χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣ (2.1.4)
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The energy expression is given by:〈
Ψ
∣∣∣Ĥel

∣∣∣Ψ〉 (2.1.5)

Because the expression for the energy is symmetric, the variational
theorem can be applied to this expression. In practice, the HF energy is
minimized with respect to changes in the spin orbitals χi by Lagrange’s
method of undetermined multipliers:

L[{χi}] = EHF [{χi}]−
∑
ij

λij (< i|j >)− δij) (2.1.6)

where λij are the undetermined Lagrange multipliers and < i|j > is
the overlap between spin orbitals i and j:

< i|j >=

∫
χ∗i (x)χj(x)dx (2.1.7)

Setting δL = 0, and after some mathematical operations the HF
equations for the energy defining the orbital is obtained as:∑

i

λjiχi(x1) = ĥ1χj(x1)

+
∑
i6=j

{∫
χ∗i (x2)ĥ2χi(x2)χj(x1)]d(x2)−

∫
χ∗i (x2)ĥ2χi(x1)χj(x2)]d(x2)

}
= ĥ1χj(x1) +

∑
i

(Ĵi − K̂i)χj

(2.1.8)

The first integral is called the Coulomb term and usually, while the
second term is the exchange term, that are commonly written as orbital
dependent operators Ĵi and K̂i, respectively.

Realizing that the above integrals cancel each other out for i = j and
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defining the Fock operator as

F̂ = ĥ1 +
∑
i

(Ĵi − K̂i) (2.1.9)

one can rewrite eq. 2.1.8 as:

F̂χi =
∑
i

λjiχj (2.1.10)

I will hereafter for simplicity on focus on the solutions that satisfy:

λji = δjiεi (2.1.11)

Solving the Fock equation 2.1.10 involves the evaluation of the orbitals
at every point in space. Therefore, in practice the orbitals are expanded
in terms of a known basis set and variation is carried out over the
coefficients C of the basis set χ̃. I will cover the choice of basis set in
detail in Section 2.1.3. Each orbital is written as:

χi(x) =

Nb∑
µ=1

Cµiχ̃µ (2.1.12)

where Nb is the number of basis functions used. Introducig this to into
eq. 2.1.10 gives:

F̂ (x)
∑
µ

Cµiχ̃µ(x) = εi
∑
µ

Cµiχ̃µ(x) (2.1.13)

Multiplying by χ̃∗ν(x) from the left and integrating yields:∑
µ

Cµi

∫
χ̃∗ν(x)F̂ (x)χ̃µ(x)dx = εi

∑
µ

Cµi

∫
χ̃∗ν(x)χ̃µ(x)dx

(2.1.14)
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This equation can be written in matrix form as:

∑
µ

FνµCµi = εi
∑
µ

SνµCµi (2.1.15)

or
FC = SCε (2.1.16)

Here F is the Fock, S the overlap and C the coefficient matrix. Solving
this matrix equation is the key step of the most common implementa-
tions of the HF and post-HF methods.

The HF approximation is a mean-field solution to the Schrödinger
equation as any electron is affected by the average potential exhibited
by all other electrons. Configuration Interaction (CI) and Coupled
Cluster (CC) belong to the family of post-HF methods, improving on
the accuracy of the method.

Configuration Interaction In order to reach higher accuracy than
provided by the HF method, in CI the variational wave function is
constructed as a linear combination of configuration state functions,
which take into account that the presence of an electron modifies the
probability distribution function of another electron. This is known
as electron correlation. Practically, the CI wavefunction is a linear
combination of Slater determinants |Φ〉:

|Ψ〉 =
N∑
p=0

Cp|Φ0〉 =c0|Φ0〉+
occ∑
i

vir∑
a

cai |Φa
i 〉+

occ∑
i<j

vir∑
a<b

cabij |Φab
ij 〉

+
occ∑

i<j<k

vir∑
a<b<c

cabcijk|Φabc
ijk〉+ ...

(2.1.17)

The first contribution is the HF Slater determinant, the following
contributions arise from Slater determinants that describe the system
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where 1,2,3 electrons are excited from any occupied orbital i,j,k to
the unoccupied orbitals a,b,c. The linear coefficients are determined
variationally via diagonalization of the Hamiltonian.

For any but the simplest systems, the summation in eq. 2.1.17 must
be truncated, such that only a small subset of detmerinants has to be
calculated. The disadvantage of truncated CI-methods is that they
are not size extensive. This means that the energy for the system AB
consisting of two independent subsystems A and B, is no longer the
sum of the energies of A and B.

Coupled Cluster Coupled Cluster theory overcomes the self-extensivity
problem by taking an exponential Ansatz to the wavefunction using a
cluster operator T : [7,8]

|Ψ〉 = eT |Φ0〉 (2.1.18)

The cluster operator is given by:

T = T1 + T2 + T3 + ..., (2.1.19)

where T1 is the operator of all single excitations, T2 is the operator of
all double excitations and so on. In practice the order of the excitations
that can be taken into account are finite and the operator is expanded as
a Taylor series. For example, considering single and double excitations
(T1 and T2), it becomes:

eT = 1+T+
1

2!
T 2+· · · = 1+T1+T2+

1

2
T 2

1 +T1T2+
1

2
T 2

2 +· · · (2.1.20)

The CC wave function, that is obtained by truncating the cluster
operator (e.g. CCSD, taking into account only single and double
excitations), contains all determinants of such excitation in the Fock
Space. Truncated CC provides therefore a systematical improvement
of truncated CI, where only those excitations that arise from linear
application of the cluster operator are taken into account.
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In this thesis we employed CCSD(T), standing for Coupled Cluster
Single and double excitation with triple excitations calculated using per-
turbation theory for the benchmarking purposes. It is often referenced
as the gold standard of quantum chemistry.

2.1.2. Density Functional Theory

Hohenberg-Kohn theorems DFT is based on the two Hohenberg-
Kohn theorems. [5] The first theorem shows that given a quantum me-
chanical system in its ground state, the corresponding density ρ(r) is
unequivocally determined by one well-defined potential operator V̂ . As
a consequence, because V̂ distinctly describes the Hamiltonian of the
system, the ground state energy and all resulting physical observables
can be expressed as functionals of the electron density.

The second theorem establishes a variational principle for the ground
state density. It shows that, given any trial density ρ̄(p) > 0 with∫
ρ̄(r)dr = N it follows that E[ρ̄] ≥ E[ρ]. From this theorem the

ground-state density is obtainable in a variational way by rewriting the
electronic Schrödinger equation 1.2.8 in terms of the density:

E[ρ] = T [ρ] + Eee + Een[ρ] =

∫
ρ(r)ν(r)dr + FHK [ρ] (2.1.21)

where ν(r is the potential, and FHK [ρ] = 〈Φ[ρ]|Hel|Φ[ρ]〉 the Hohenberg-
Kohn functional. Hel consists of the kinetic energy operator and the
electron-electron repulsion functional. Only the ground state density ρ
fulfills the stationary principle:

δ{E[ρ]− µ[

∫
ρ(r)dr−N ]} = 0, (2.1.22)
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with µ given by the Euler-Lagrange equation:

µ = ν(r) +
δFHK [ρ]

δρ
(2.1.23)

In this formalism FHK is independent of the external potential. Though
the HK theorems are rigorous, they do not yield an analytical expression.
Therefore, further approximations are needed to make DFT applicable
to computational chemistry.

Kohn-Sham equations The Hohenberg-Kohn theorems were re-
formulated into a computationally implementable form by Kohn and
Sham. [6] The main idea of Kohn and Sham (KS) was that any system
of N interacting particles can be mapped into a non-interacting system
that is described by the same density. For the resulting system the
density can be written as:

ρ(r) =
N∑
i=1

|ϕKSi (r)|2 (2.1.24)

where ϕKSi (r) are auxiliary single-particle functions that take the name
of Kohn-Sham orbitals. The kinetic energy functional has the analytical
expression:

Ts[ρ] =
N∑
i=1

〈
ϕKSi

∣∣∣∣−1

2
∇2

∣∣∣∣ϕKSi 〉
(2.1.25)

The Hohenberg-Kohn functional can be re-formulated:

FHK [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (2.1.26)

where J is a functional describing the Coulomb energy and the Exc is
the exchange-correlation functional:

Exc[ρ] = T [ρ]− Ts[ρ] + Eee[ρ]− J [ρ] (2.1.27)
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The name initiates from, that this term can be physically interpreted as
containing the contributions of the electron correlation of and particle
exchange to the system energy. The Euler-Lagrange equation 2.1.23
thus becomes:

µ = νeff(r) +
δTs[ρ]

δρ
(2.1.28)

νeff = ν(r) +

∫
ρ(r′)

|r− r′|dr
′ +

δExc[ρ]

δρ
(2.1.29)

The total energy of the system is given by:

E =
N∑
i=1

ε− 1

2

∫
ρ(r)ρ(r′)

|r− r′| dr
′dr + Exc −

∫
δExc[ρ]

δρ
dr (2.1.30)

where εi are the KS orbital energies of the non-interacting system,
which are calculated solving the KS equations self-consistently:[

1

2
∇2 + νeff(r)

]
ϕi = εiϕi (2.1.31)

The advantage of this formulation is that the single-particle equations,
in principle, exactly solve the many-body problem. The problem that
remains, however, is that the Exc again does not have a proper analytical
expression and therefore it requires the use of approximate expressions,
as presented in the next paragraph.

Exchange-Correlation Functionals

LDA approximation The first successful approximation for the
exchange-correlation functional was already proposed in the original pa-
per by Hohenberg and Kohn. [5] The electron density is approximated to
behave like a uniform electron gas (LDA, Local Density Approximation).
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The exchange-correlation functional becomes:

ELDA
xc [ρ] = −3

2

(
3

4π

) 1
3
∫
ρ

4

3
(r)dr (2.1.32)

The LDA approximation describes highly covalent systems well, but
does not describe many other features, for example weaker interactions
like hydrogen bonds.

Gradient-Correlated approximation The family of so-called Generalized-
gradient approximation(GGA) functionals introduces a direct depen-
dency on both the density, and the gradient of the density.

The energy of the exchange correlation functional Exc in GGA is
assumed to be separable in the sum of an exchange Ex and a correlation
term Ec:

EGGA
xc = EGGA

x + EGGA
c (2.1.33)

The exchange part is formulated as a function of the density ρ and a
dimensionless density gradient s:

EGGA
x (ρ,∆ρ) =

∫
r

ρ(r)εLDAx (ρ)Fx(s) (2.1.34)

where εunifx (ρ) = −3kF/(4π) is the Slater exchange energy density in
the LDA approximation, kF = [3π2ρ(r)]1/3 is the Fermi wave vector
and Fx(s) is the GGC enhancement factor:

s =
|∇|ρ
2kFρ

(2.1.35)

The correlation part is formulated as:

EGGA
c (ρ,∆ρ) =

∫
r

ρ(r)εLDAx (ρ)Fc(rs, ζ, t) (2.1.36)
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ζ the spin polarisation, rs = [(4π/3)ρ(r)]1/3 and t another dimensionless
gradient:

t(r) =
|∇|ρ
2gksρ

(2.1.37)

with g = [(1 + ζ)2/3 + (1− ζ)2/3]/2 and ks = (4kF/π)1/2.

Perdew-Burke-Ernzerhof functional In this thesis I employed the
Perdew-Burke-Ernzerhof (PBE) approximation. [43] The PBE functional
is a parameter-free GGA. "Parameter-free" here indicates that it is not
parametrized by fitting to experimental data, but rather by theoretically
derived constants.

In PBE the enhancement factor of the exchange functional takes the
form:

F PBE
x (s) = 1 + κ =

κ

1 + µ
κs

2
(2.1.38)

where κ = 0.804 is set to the maximum value of the local Lieb-Oxford
bound [44] and µ = 0.21951 is set to account for the linear response of
the LDA approximation such that the gradient exchange part accounts
for the correlation.

The correlation functional is adapted from the Perdew-Wang-91 corre-
lation functional [45]:

F PBE
c (rs, ζ, s) = 1 +

H(rs, ζ, s)

εLDAc (rs, ζ)
(2.1.39)

with
HPBE = g3 β

2

2α
ln

[
1 +

2α

β

t2 + At4

1 + At2 + A2t4

]
(2.1.40)

with
A(rs, ζ) =

2α

β

1

e
−2αεLDAc (rs,ζ)

g3β2

(2.1.41)

with α = 0.0716 and β = 0.066725.
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2.1.3. Natural Bond Order Analysis

Natural Bond Order (NBO) Analysis is a tool for translating the
solutions of the Schrödinger equation into chemical bondings concepts.
The NBO algorithm translates atomic orbitals (AOs) into molecular
orbitals (MOs) by a series of transformations, over localised ‘natural’
atomic orbitals (NAOs), hybrid orbitals (NHOs), bond orbitals (NBOs),
and (semi-)localised molecular orbitals (NLMOs). Each of these forms
a complete orthonormal set. The details of this transformation are
covered in Ref. [46] and Ref. [47].

2.2. Basis Sets and Pseudopotentials

Basis Sets Most of the time spent in the calculations is on numerically
solving the integrals in the Fock and overlap matrices in eq. 2.1.16.
Therefore, we need a smart choice for the representation of the basis
functions ϕi in the above equations. A typical choice are the so-called
Slater-type-orbitals (STOs), which have the shape of the solutions of
the hydrogen atoms to first order of the Laguerre polynomials.

Rn(r) = (2ζ)6n+
1

2
[(2n)!]−1 1

2rn−1exp(−ζr) (2.2.1)

STOs are however difficult to compute and are therefore approximated
as a linear combination of more easily computable Gaussian type
orbitals (GTOs) as shown in Figure 2.1. A special notation is used
when GTO is a linear combination of GTOs For example, STO-3G
a minimal basis in which three Gaussian are used to represent each
slater determinant. In this thesis we use the 6-31++G(d,p) basis set
for Natural Bond Analysis. It uses 6 Gaussians to describe the core
orbitals. For the valence orbitals, the basis set is split; three Gaussians
are used to describe the contracted part of the wave function and one
for the diffusive part. This split is important to allow for contracting
and expansion of the valence orbitals according to the environment.
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Basis Sets and Pseudopotentials

Figure 2.1. – A slater type orbital (STO) can be approximated by Gaussian
type orbitals (GTOs).

The ++ stands for diffusive functions that are added to the orbitals.
The G(d,p) index adds polarization functions to all atoms. The latter
two contributions are computationally expensive, but allow for the
orbitals to accommodate different symmetry due to orbital distortion.

Plane Wave basis set The plane wave basis set is especially suitable
for systems that use periodic boundary conditions (PBC), see Section
2.6. Using the Bloch theorem, every KS wave-function can be expanded
to:

ϕk
i (r) =

1√
V
eik·r

∑
g

ckj (g)eig·r (2.2.2)

where V is the Volume of the unit cell, k vectors of the first Brillouin
zone, g is a reciprocal lattice vector, c the first Fourier component of the
plane waves expansion and the summation is over infinite lattice vectors.
One advantage of using a plane wave basis set is that convergence of
the results may be systematically benchmarked over a single parameter,

27



METHODS

the cut-off energy Ecut for the kinetic energy TPW . Furthermore, the
incomplete-basis set corrections and the basis set superposition error
are eliminated by having a non-localized origin of the basis set. The
additional use of Fast Fourier Transform algorithms ensures that even
large systems can be handled computationally efficiently.

Pseudopotentials The main drawback of using plain-wave basis sets
is that it is computationally too expensive to describe the core electrons
accurately, which create sharp fluctuations of the wavefunction around
the nuclei. One approximation can be introduced based on the fact
that the core electrons are energetically much lower lying in energy
than the valence electrons and do not participate in chemical properties
of the system. Therefore, it could be possible to consider explicitly
only the valence electrons in the electronic structure calculations. In
this procedure, the core electrons are incorporated into the nucleus,
producing a new central potential that takes the name of "pseudopo-
tential". Pseudopotentials are usually derived from all electron atomic
calculations and have to fulfill the following criteria:

• The valence pseudo-wave-functions should not contain any radial
nodes

• The valence all electron and pseudopotential eigen-values from
quantum mechanical calculation must be the same

• The all electron and pseudo radial wave functions must be the
same beyond the cut-off distance

• The integrated electron density within the cut-off distance must
be the same

• At the cut-off distance the pseudo-wavefunction and its first four
derivatives must be continuous

• The pseudopotential should have no curvature at the origin

To accommodate these conditions, the pseudopotential wave functions
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take the general form:

ϕPPl (r) =
{
ϕAEl (r); r > rcut rlep(r); r ≤ rcut (2.2.3)

with

p(r) = c0 +
6∑
i=1

cir
2i (2.2.4)

where the coefficients c are determined by the first three criteria.

The pseudopotential functionals take the form:

Vpseudo = Vval +
∑
m,l

|Yl,m〉Vl(r)〈Yl,m| (2.2.5)

where |Yl,m〉 are spherical harmonics.

2.3. Monte Carlo Simulations

Monte Carlo is a family of computational algorithms that are used to
model a variety of multidimensional problems using random numbers.
Here, I introduce the Markov Chain Monte Carlo (MCMC) approach
to generate efficient sampling from a probability distribution, more
precisely the Boltzmann distribution of states. In MCMC, a chain of
states C0→ C1 ... Ck → Ck+1 is generated starting from an initial state
C0 by a random walk in the configurational space. The probability to
sample each conformation has a certain weight according to the energy
of the state.

2.3.1. Metropolis algorithm

The practical implementation of MCMC is obtained by the Metropolis
algorithm (MA). MA profits from the knowledge of the relative prob-
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ability of two states (equation 1.2.1), even in the case that the total
probability distribution is unknown and non-obtainable, meaning the
full phase space has not been sampled and the free energy landscape is
unknown. The Metropolis algorithm is gains numerical efficiency when
the number of dimensions is high.

The MA aids finding the equilibrium state of the simulation more
efficiently, as well as sampling the obtained equilibrium’s microstates
to estimate its average properties.

The MA works according to the following scheme:

• Evaluate the energy Ei of the current state value i

• Create a trial state Ct and calculate Et

• If Et ≤ Ei then accept the trial state and create a new state
Ci+1 = Ct

• If Et > Ei, then

– Calculate the Boltzmann weights p = exp(−β(Et − Ei))

– Select a random number ξ

– If ξ < p accept the trial state; Ci+1 = Ct

– Else reject the trial state (Ci+1 = Ci)

The whole procedure is iterated over several steps, generating a Markov
chain. The MA guarantees that the collection of states sampled in
the MCMC matches the target Boltzmann distribution. The desired
properties can be calculated on-the-fly over the MCMC sampled state
until convergence is reached. Importantly, the MA allows the systems
to sample states of higher energy, thus making it possible to escape
local minima. The more shallow is the minimum, the more likely the
simulation overcomes the barrier.
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2.4. Molecular Dynamics Simulations

As introduced in the first chapter, the main idea behind MD simulations
is to sample the statistical ensemble of microstates from the physical
time evolution of the system using numerical integration of Newton’s
equation of motion.

F = ma (2.4.1)

where F is the force, m the particle mass and a is the acceleration.

When the evaluation of the forces is done at the QM level, the method is
referred to as Ab Initio Molecular Dynamics (AIMD) simulation. AIMD
in current computational chemistry is mostly implemented using either
Ehrenfest Molecular Dynamics [48], Born Oppenheimer Molecular Dy-
namics (BOMD) or Car Parrinello Molecular Dynamics (CPMD). [49] In
this thesis I employ BOMD which will be in short introduced hereafter.

2.4.1. Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Approximation As introduced in Chapter 1,
the BO approximation is based on separating adiabatically the motion
of the nuclei from that of the electrons. Based of this assumption, the
wavefunction is factorized in two, electronic and nuclear, components:

Ψ(R, r) = Φ(r;R)χ(R) (2.4.2)

The Schrödinger equation (eq. 1.2.8) is rewritten as:

ĤΦ(r;R)χ(R) = EΦ(r;R)χ(R) (2.4.3)

using the separation of eq. 1.2.6 and the explicit term for the nuclear
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potential energy term:

T̂N =
∑
N

~
2mN

∇2 (2.4.4)

one obtains 2.4.3 as:

ĤelΦ(r;R)χ(R)−
∑
N

~
2mN

∇2
NΦ(r;R)χ(R) = EΦ(r;R)χ(R)

(2.4.5)
Explicitly evaluating the nuclear kinetic energy term of eq. 2.4.5 by
differentiating the factorized wavefunction we obtain:

−
∑
N

~
2mN

∇2[(∇2
NΦ(r;R))χ(R)+2∇NΦ(r;R)∇Nχ(R)+Φ(r;R))∇2

Nχ(R)]

(2.4.6)

From the approximation that the electron wavefunction is only para-
metrically dependent on the position of the nuclei, the first two terms
on the above summation are zero. Thus we obtain for nuclear wave
function (eq. 1.2.9):

−
[∑

N

~
2mN

∇2 + Ĥel(R)

]
χ(R) = Eχ(R) (2.4.7)

BOMD Equation of Motion The BOMD equation of motion for
the ground state can be derived from the coupled Schrödinger equation
of electrons and nuclei [50] and is given by:

mI
d2rI
dt2

= −∇IminΦ

{〈
Φ
∣∣∣Ĥel

∣∣∣Φ〉}
ĤelΦ = EelΦ

(2.4.8)
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where the indexing Φ(r;R) shall be implied hereafter. The potential
energy surface for the nuclei is obtained by solving the fixed-nuclei
electronic structure problem of the time-independent Schrödinger equa-
tion at every molecular dynamics step. The time dependence of the
electronic structure is implicitly treated by its dependency on the
time-evolution of the nuclei propagation.

For Kohn-Sham density functional theory used in this thesis, we can
derive the equations of motion more specifically. With the exact wave
function represented by a single slater determinant Φ = 1/

√
N ! detψi

with orthonormal wave functions ψi, the corresponding minimization
problem becomes:

minΦ

〈
Φ|Ĥel|Φ

〉
|{〈ψiψj〉=δij} (2.4.9)

This can be reformulated as a Lagrangian formalism:

L = −
〈

Φ|Ĥel|Φ
〉

+
∑
ij

Λij(〈ψiψj〉 − δij), (2.4.10)

where Λij are the Lagrangian multipliers used to impose the orthonor-
mality constraint. Variation of the Lagrangian L with respect to the
orbitals ψi leads to reformulation of the equation of motion as:

mI
d2rI
dt2

= −∇IminΦ{〈Φ|Hel|Φ〉}

0 = −ĤKS
el ψi +

∑
j

Λijψj,
(2.4.11)

where ĤKS
el is the effective one-particle Hamiltonian obtained from KS

theory. We employ the QUICKSTEP [51] implementation of BOMD in
this thesis.
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2.4.2. Hellman-Feynman Theorem

Equation 2.4.8 requires the evaluation of the gradient of the expecta-
tion value of the electronic Hamiltonian with respect to the ground
state wavefunction. According to the Hellman-Feynman theorem (HF
theorem) this can be evaluated according to:

∇Eel(R) =
〈

Φ(R)
∣∣∣∇Ĥel(R)(λ)

∣∣∣Φ((R)
〉

(2.4.12)

More generally the HF theorem states that:

∂E0(λ)

∂λ
=

〈
Φ

∣∣∣∣ ∂∂λĤ(λ)

∣∣∣∣Φ〉 (2.4.13)

where we write the electronic Hamiltonian of a quantum-mechanical
system as Ĥel = Ĥel(λ), where λ is a general continuous parameter.
The electronic problem is solved according to:

Ĥel(λ)Φ(λ;~r) = Eel(λ)Φ(λ;~r) (2.4.14)

for all λs, the ground state is normalized:

∫
|Φ(λ;~r)|2d3r = 1 (2.4.15)

The demonstration simply follows from the direct calculation of the
derivative in the left of the former expression:

∂E0(λ)

∂λ
=

〈
Φ

∣∣∣∣ ∂∂λĤ(λ)

∣∣∣∣Φ〉+

〈
∂

∂λ
Φ
∣∣∣Ĥ(λ)

∣∣∣Φ〉+

〈
Φ
∣∣∣Ĥ(λ)

∣∣∣ ∂
∂λ

Φ

〉
(2.4.16)

Because Ĥ is a Hermitian operator, the second and third terms of the
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right-hand side are equal to:

E0

〈
∂

∂λ
Φ

∣∣∣∣Φ〉+ E0

〈
Φ

∣∣∣∣ ∂∂λΦ

〉
= E0

∂

∂λ
〈Φ|Φ〉 (2.4.17)

Thus,

∂E0(λ)

∂λ
=

〈
Φ

∣∣∣∣ ∂∂λĤ(λ)

∣∣∣∣Φ〉+ E0
∂

∂λ
〈Φ|Φ〉 =

〈
Φ

∣∣∣∣ ∂∂λĤ(λ)

∣∣∣∣Φ〉
(2.4.18)

In fact,
∂

∂λ
〈Φ|Φ〉 = 0 (2.4.19)

because of the normalisation condition in eq. 2.4.15.

However, the HF Theorem is strictly valid for any exact, normalized
eigenstate of the Hamiltonian operator. Apart from some simple model
systems, in quantum mechanics we are usually incapable of obtaining
any analytical formulation of such states. Nonetheless, we are able to
compute approximations to Ψ.

HF theorem in the variational regime The way we typically solve
the Hamiltonian problem is by expanding its ground state on a complete
space provided by an opportune basis set, and by then truncating it
over a finite number of such functions:

Φ(λ;~r) =
∞∑
n=1

cn(λ)φn(λ;~r) ≈
M∑
n=1

cn(λ)φn(λ;~r) = ΦV AR(λ;~r)

(2.4.20)
In the most general case, both the basis functions and the coefficients
of the expansion depend on λ. Without losing generality, we can choose
the basis functions to be orthonormal:

〈φn|φn′〉 = δnn′ (2.4.21)
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The truncated expansion in eq. 2.4.20 is a variational solution of Ĥ if
the set of coefficients {cn(λ)} minimises the quantity:

〈ΦV AR|Ĥ|ΦV AR〉 = EV AR
0 (λ) ≥ E0(λ) (2.4.22)

If the expansion were made on a complete set of basis functions, the
variational solution would converge to the exact solution and the HF
theorem remain still valid, but this is not the case in the most common
numerical practices.

In order to find the solution to Eq. 2.4.22, one has to project the
variational solution over the selected M basis functions:

Ĥ |ΦV AR〉 = EV AR
0 (λ) |ΦV AR〉

Ĥ

M∑
n=1

cn(λ) |φn〉 = EV AR
0 (λ)

M∑
n=1

cn(λ) |φn〉∑
n

cn 〈φn′| Ĥ |φn〉 = EV AR
0

∑
n

cn 〈φn′|φn〉

The solution to eq. 2.4.23 is found solving the secular problem:

M∑
n=1

[Hnn′(λ)− EV AR
0 (λ)δnn′]cn(λ) = 0 (2.4.23)

That is, diagonalising the Hnn′ matrix:

Hnn′ = 〈φn| Ĥ |φn′〉 (2.4.24)

from which it follows: ∑
n

cnHnn′ = EV AR
0 cn′ (2.4.25)

Let’s now compute again a generalized force over the λ parameter
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when the solution is a variational approximation over finite basis set
expansion.

∂EV AR
0 (λ)

∂λ
=

〈
ΦV AR

∣∣∣∣ ∂∂λĤ(λ)

∣∣∣∣ΦV AR

〉
+2Re

[〈
∂

∂λ
ΦV AR

∣∣∣Ĥ(λ)
∣∣∣ΦV AR

〉]
(2.4.26)

The first term is the usual one from the HF theorem. Let’s check what
happens to the 2nd term when the expansion of the variational solution
is made on an incomplete basis set.

〈
∂

∂λ
ΦV AR

∣∣∣Ĥ(λ)
∣∣∣ΦV AR

〉
=
∑
nn′

∂c∗n
∂λ

cn′Hnn′+
∑
nn′

c∗ncn′

〈
∂

∂λ
φn

∣∣∣Ĥ∣∣∣φn′〉
(2.4.27)

Because the normalisation condition for all λ (eq. 2.4.15) is kept also
for ΨV AR (then, for all λ:

∑
n |cn(λ)|2 = 1), it follows that the real

part of the first term must be zero.

Nonetheless, the second term does not vanish. These forces, coming
from numerical truncation of the variational solution, must be taken
into account in quantum mechanical calculations of generalised forces,
otherwise spurious interactions (taking the name of Pulay forces) ap-
pear.

Using the definition of the unity operator: 1 =
∑

n |φn〉 〈φn|, the second
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term becomes:∑
nn′

c∗ncn′

〈
∂

∂λ
φn

∣∣∣Ĥ∣∣∣φn′〉 =
∑
nn′

c∗ncn′

〈
∂

∂λ
φn

∣∣∣1Ĥ∣∣∣φn′〉
=
∑
nn′

c∗ncn′
∑
n”

〈
∂

∂λ
φn

∣∣∣∣φn”

〉〈
φn”

∣∣∣Ĥ∣∣∣φn′〉
=
∑
nn”

c∗n

〈
∂

∂λ
φn

∣∣∣∣φn”

〉∑
n′

cn′Hn′n”

= EV AR
0

∑
nn”

c∗ncn”

〈
∂

∂λ
φn

∣∣∣∣φn”

〉
(2.4.28)

In fact, the term may still vanish in one special case, precisely, if the
chosen basis set does not depend on the parameter λ. The most relevant
example occurs if the electronic wave function is expanded on a set of
plane-waves.

Particle propagation in Molecular Dynamics As introduced in
the previous chapter, the EOMs in MD simulations have to be solved
iteratively using numerical integration algorithms. These algorithms
should conserve the energy of the system, be computationally as cheap
as possible and maximize the applicable time step while keeping the
error due to using numerical approximation as low as possible.

Verlet algorithm Historically the first algorithm of this kind used
MD was the Verlet algorithm. [52] If the previous position of a particle
is known, the summation of

r(t+ ∆t) = r(t) + v(t)∆t+
F (t)

m

(∆t)2

2
+O(∆t3) (2.4.29)

and
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r(t−∆t) = r(t)− v(t)∆t+
F (t)

m

(∆t)2

2
+O(∆t3) (2.4.30)

yields

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F (t)

m
(∆t)2 +O(∆t4) (2.4.31)

The error becomes fourth order in ∆t because the terms of third order
cancel each other out.

A drawback of using the Verlet propagation algorithm is that velocity
is not expressed explicitly. Thus they can only be estimated by:

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2) (2.4.32)

therefore, quantities dependent on the velocities are not very accurately
determined.

Leap Frog Algorithm However, the knowledge of two consecutive
values in time for a variable yields a good estimate for its derivative at
a mid-point, which is used in the Leap-Frog-algorithm.

v

(
t+

1

2
∆t

)
=

1

∆t
[r(t+ ∆t)− r(t)] (2.4.33)

The velocities at t+ 1
2∆t can then be obtained using velocities of the

previous half-step.

v

(
t+

1

2
∆t

)
= v

(
t− 1

2
∆t

)
+
F (t)

m
∆t (2.4.34)
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and the particle propagation is given by:

r(t+ ∆t) = r(t) + v

(
t+

1

2
∆t

)
∆t (2.4.35)

The upside of this algorithm is that the velocities are also calculated
and can be evaluated, however the time step is half as big with respect
to the Verlet algorithm. More advanced algorithms such as the Velocity
Verlet algorithms [53] or the Beeman algorithm [54] have also been derived.
They both yield information about the time, velocities and forces at
the same time, while yielding accurate description of the system.

In the Velocity Verlet algorithm, used in this thesis, the positions and
velocities are simultaneously updated according to:

r(t+ ∆t) = r(t) + v(t)∆t+
a(t)

2
∆t2

v(t+ ∆t) = v(t) +
a(t+ ∆t) + a(t)

2
∆t

(2.4.36)

In practice, the initial particle position is either obtained by an educated
guess or structural data, such as X-ray crystallographic structures. The
initial velocities are linked directly to the temperature of the system

Ekin =
3N

2kBT
=

1

2

N∑
i1

miV
2
i (2.4.37)

and initialized from the Maxwell-Boltzmann distribution

p(vix) =

(
mi

2πkBT

)1/2

exp

[
−miv

2
ix

2kBT

]
. (2.4.38)

Here p is the possibility for the particle i with the mass mi to obtain a
velocity vi. It is crucial that the total momentum P of the particles
must be zero for the simulation not to have an artificial drift throughout
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the simulation box:

P =
N∑
i1

miVi = 0 (2.4.39)

The acceleration is derived from the potential energy according to:

ai(t) = − 1

m

dEpot

dri(t)
(2.4.40)

The final iteration procedure of BOMD can be summarized in following
flowchart:
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2.5. Thermostats

If the simulation is carried out in the canonical ensemble (NVT), the
system must be kept at the correct temperature. In this thesis we
employ the Canonical Sampling/Velocity Rescaling (CSVR) and the
Nosé-Hoover chain thermostat. For any explicit deduction omitted in
this section and additional choices of thermostats please refer to Frenkel
and Smit. [55]

2.5.1. CSVR thermostat

Using the CSVR thermostat the velocities are rescaled every nth step,
such that the kinetic energy of the system stays close to the target
temperature T0.

vNnew = λvN , λ =

√
T0

T (t)
(2.5.1)

Often a temperature tolerance can be used, such that the temperatures
are rescaled to the target temperature only if the system temperature
differs more than a certain value from the target temperature. This
choice is used to better capture statistical energy fluctuations of the
canonical ensemble.

2.5.2. Nosé-Hoover chain thermostat

The Nosé-Hoover chain is based on the extended Lagrangian formalism.
The original idea of Nosé [56] was to add two additional degrees of
freedom to the system by coupling it to an imaginary heat bath. This
imaginary heat bath is classified by the positions s, the momentum ps
and the effective mass Q, that has to be parameterized.
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The Hamiltonian of the system is then formulated as:

H = V̂kin + V̂pot +
p2
s

2Q
+ kBT (3N + 1)ln(s) (2.5.2)

Where the first two terms are the kinetic and potential energy terms of
the original system and the latter two terms the kinetic and potential
energy of the heat bath, respectively. The kinetic energy is coupled to
the heat bath via:

V̂kin =
1

2

N∑
i=0

m−1
i |pi|2, pi = mivi × s (2.5.3)

The result is that the microcanonical simulation of the system including
the heat bath yield a canonical ensemble for the original system. The
advantage of the Nosé thermostat is that the dynamics of all degrees of
freedom time-reversible and do not include random number generation.
The drawback of this methods is that implementation of the Nosé is
problematic as it introduced simulation time as a variable through the
scaling factors s in eq. 2.5.3.

In order to overcome this problem Hoover developed an extended for-
malism of the Nosé thermostat. [57] The basic idea is to use a friction
parameter to adjust the particle velocities in the Hamiltonian formula-
tion of the system, rather than particle momentum parameter ps.

H = V̂kin + V̂pot +
ζ2Q

2
+ 3NkBT ln(s) (2.5.4)

In the Nosé-Hoover thermostat the particle position and velocity prop-
agation is given by:
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δri
δt

= vi

δvi
δt

= − 1

mi

δVPot
δri

− ζvi

δζ

δt
=

(
N∑
i=0

mi|vi|2 − 3NkBT

)
/Q

ln(s)

δt
= ζ

(2.5.5)

The advantage of this formalism is that the variable ζ does not change
with time and that numerical integration scheme such as the Velocity
Verlet method described in Chapter 1 have been developed to propagate
the above equations. The Nosé-Hoover can be extended to couple to
multiple heat baths to increase temperature equilibration properties.
This approach is called Nosé-Hoover chain thermostat, where the chain
length indicates the number of heat baths the system is coupled to. [58]

2.6. Periodic Boundary Conditions

Due to limited system size in simulations, we employ periodic boundary
conditions (PDB). Using periodic boundary conditions the system is
surrounded by infinitely many replications of itself. The use of PBC
eliminates the surface and any bulk-surface interactions that otherwise
dominate the system. In practice this means, that as soon as an atom
leaves the unit cell its periodic image enters the unit cell through the
opposite side and there is not interface. However, the drawback is that
we introduce periodicity to systems that are inherently non-periodic
(e.g. solutions).

In MD and MC interactions are only considered with the closest periodic
image of any atom. The cutoff distance or rather the system size has to
be chosen in such a way that no molecule interacts with itself through
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periodic boundary conditions. The most common choice for unit cells
used with PBC are orthorombic, however other tile space geometries
are in principle implementable for PBC.

2.7. Enhanced Sampling Methods

The capability of describing specific molecular events is determined by
the characteristic times of the same events compared to those accessible
by the simulations.

MD allows a correct exploration of the microstates of the system
whenever the conditions of the ergodic theorem, in particular that the
conformational space is connected, are satisfied. However, numerous
processes of interest exhibit the property of hindered ergodicity. Ex-
amples of processes and ways that ergodicity can he hindered are, for
example, activated processes or processes exhibiting slow diffusivity. In
activated processes the problem with achieving ergodicity arises if any
of the basins of the potential energy surface are separated by a large
energy barrier. In this case, if the kinetic energy of the system does
not suffice, the barrier can be seemingly impossible to overcome, and
the states beyond this barrier cannot be sampled.

To overcome these barriers computational chemistry uses different
methods to enhance the sampling. In this thesis I employed constrained
molecular dynamics, metadynamics, and simulated annealing. These
methods allow the correctly weighted sampling of the states, and a as
a consequence, the possibility of estimating the free energy landscape
of the underlying processes.

2.7.1. Constrained Molecular Dynamics

In Constrained Molecular Dynamics (CMD) sampling of rare events is
obtained rigidly constraining the system to specific values of a prede-
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termined reaction coordinate, [59] [60] while the remainder of the system
is left free to move. The constrained force F is collected over multiple
MD runs at different values of the reaction coordinate R. The free
energy along R is obtained as the integration of the time-averaged
forces F̄ along the reaction coordinate from initial configuration R0 to
final configuration Rf :

∆G(R) =

∫ Rf

R0

F̄ (R′)dR′ (2.7.1)

For an interatomic constraint, as employed in this work, the force on
the constraint is equal to the Lagrangian multiplier:

F̄ (R) = 〈λ(R)〉 = −
〈
δV

δrAB
− 2kBT

rAB

〉
rAB=R

(2.7.2)

where the brackets indicate the ensemble average at each value of
R, which is defined by the distance between atoms A and B. This
integration scheme can be applied independently of the nature of the
interatomic forces, and has been successful in the description of different
(bio)chemical events. [61,62] In practice the value of R is varied from R0

to Rf incrementally. The size of these increments determines the
computational cost and the accuracy of the simulation.

2.7.2. Metadynamics

Metadynamics is an enhanced sampling algorithm which uses a time
dependent conformational bias based on the states previously sampled
in the simulation. [17,63] Using metadynamics is especially suitable if one
has a general understanding of the reactant and product states of a
process, but the intermediate states are not precisely known, or there
may be competitive pathways.

In Metadynamics the external bias is applied to a set of order parameters
that take the name of collective variables (CVs).
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An appropriate choice of the CVs is produced when the reactant, the
product and the intermediate states take different values of the CVs.
The number of CVs is optimally kept as low as possible to prevent
too high computational costs. CVs are generally any slow varying
parameter that can quantify the reaction and can be evaluated during
the simulation such as coordination number, interatomic distance,
torsion angle etc.

Methodologically, the Potential energy surface (PES) is projected into
a Free Energy Surface (FES) in the collective variable space. The forces
for exploring the FES are

F t
i = −δF/δσti (2.7.3)

where si, i = 1, n are the collective variables and F is the free energy
of the system at time t. The simulation is then iterated using the
following procedure:

• The system is allowed to evolve for certain number of MD steps
under the

• The forces are averaged over time F t = 〈F 〉

• The new collective variable become σt+1 = σt + δσ ψt

|ψt|

• A time-dependent bias potential is applied to the system every
nth step.

with ψ and σ the scaled forces and scaled collective variables, respec-
tively, with respect to the estimated size ∆s of the FES projected on
the CVs with σt = st

∆s and ψt = st

∆s .

The added bias potential is of the form:

V (s, t) = ωe
|σ−σt|2

2(δσ)2

The external potential acting on the system in every consecutive time
step t is given by:

V (s, t) = ω
∑

t′≤t
∏

i e
|σi−σ

t
i |
2

2(δσ)2
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Here ω is the Gaussian height, δσ the Gaussian width.

By depositing these Gaussian potentials the simulation gains a "mem-
ory" of the previously sampled conformations and consecutively and
systematically lowers the likelihood of visiting the same state again.
Another advantage of Metadynamics is that the most relevant states,
the low energy states, are sampled multiple times. Therefore, errors
caused by using a more volatile CV and not directly sampling the
absolute lowest energy geometry right away tend to even out over the
course of the simulation.

Figure 2.2. – (a)The free energy landscape is explored by adding a Gaussian
bias potential at the current position, orange dot, of the simulation in CV
space. (b) The added bias potential makes the simulation able to overcome
even large free energy barriers. (c) After convergence of the simulation, the free
energy landscape is reconstructed from the sum of the added bias potentials.
The graphic was taken from [64].

The metadynamics run is converged when the added Gaussians are an
inverse of the FES and the resulting FES landscape becomes entirely
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flat within the limits of the Gaussian height δω. Convergence can thus
be checked by the simulations achieving random diffusion over the CV-
space, since there is no more bias of the FES surface on preferentially
explorable geometries. The number of Gaussian needed to fill the FES
is therefore proportional to ∼ (1/δσ)n, where n is the number of CVs
used. The Gaussian height and width must be varied according to
the system at hand. Too large Gaussians will result in jumps between
energy wells and non-flat final FES, while too small Gaussians will
unnecessarily prolong the computational time needed. The width of
the Gaussian must be chosen in accordance to the height selected to fit
the shape of the underlying potential. For example steep wells require
more conical Gaussians, whereas flat wells require flat Gaussians.

2.7.3. Simulated Annealing

Simulated Annealing (SA) is the technique of systematically heating
and cooling a simulation in order to obtain better sampling of the global
energy landscape. SA gains its name from the metallurgic process in
which a material is heated and cooled to systematically enlarge crystal
size and reduce the amount of defects. The desired final structure of
a unicrystal corresponds to the global structural (energy) minimum.
Simple SA works by slowly lowering the overall simulation temperature
over a series of coupled heating and cooling steps. Figure 2.3 The idea
underlying SA is the one of importance sampling. Importance sampling
probabilistically favors states of lower energy.

SA uses higher intermediate temperatures to sample higher-energy
states that must be overcome to connect local minima and the global
minimum. The basic SA algorithm can guarantee convergence to
the global minimum, but the speed of convergence might be very
slow, dependent on the system. [65] More specific SA algorithms, such
as Generalized Simulated Annealing (GSA) [66] and Fast Simulated
Annealing [67] have been derived to improve computational efficiency.
GSA for example has been shown to improve efficiency for systems of
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high dimensionality such as protein folding studies. [68]

Figure 2.3. – The simulated annealing procedure for a one-dimensional free
energy surface. Figure taken from [69].
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3. The Schlenk Equilibrium
of the Grignard Reagents

The Grignard reaction is a widely applied reaction in organic chemistry
synthesis. During the Grignard reaction a carbon-carbon bond is formed
between a nucleophilic organometallic halide of the formula R-Mg-X
(R = organic residue, X = halogen) and an electrophilic carbon. The
reaction was discovered in 1900 by Victor Grignard for which he was
awarded the Noble prize in 1912. To this day, the Grignard reaction
has kept its relevancy due to its broad range of application under mild
thermodynamic conditions. Moreover, the Grignard reagent (RMgX) is
the stepping stone of many transmetallation reagents, which are involved
in more selective and specific reactions. Prominent examples are the
Stille [70], Negishi [71] or Suzuki-Miyaura [72] coupling reactions. Nowadays
organomagnesium reagents are of high interest because of their role in
functionalization of phenol-based derivatives involving earth abundant
metal catalysts and the development of efficient synthetic protocols
allowing to work at very mild condition and with large functional
tolerance. [73]

Because of its popularity, much effort has been devoted to the im-
provement and understanding of the Grignard reaction. Though the
overall reaction equation is known, the exact intermediate and reactive
states are still not entirely characterized. The reaction has multiple
not fully characterized steps, including the multimerization state of the
Grignard reagent, the identification of the most reactive species, and
the mechanism of the final cross-coupling products.

In our first study, we tackle the problem of determining the chemical
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nature of the Gringard reagent dissolved in ether. It is known that
the nominal Grignard reagent RMgX is, in fact, a mixture of different
species at chemical equilibrium:

2RMgX � (RMgX)2 �MgR2 +MgX2. (3.0.1)

The first equilibrium is known as dimerization equilibrium, while the
second equilibrium takes the name of Schlenk equilibrium [74]. Seyferth
has described the difficulties in precisely capturing the distribution
and nature of all species in scheme 1, as they vary in abundance sub-
ject both to the solvent, and the halide and organic groups bonded
to Mg. [73] This has been evidenced by a multitude of different stud-
ies. [75–77] Solid-state structures found via X-ray diffraction studies have
shown various coordination modes for the central Mg-atom as well
as different possible nuclearities of the Grignard reagent. Ashby and
Walker showed that a tetrahedral coordination is commonly observed in
crystals structures obtained from ether solutions as EtMgBr(OEt2)2, [78]
where two molecules of solvent are bound to Mg. Instead, penta-
coordination was found in trigonal bipyramidal and square pyramidal
structure for CH3MgBrTHF3 in THF solvent. [79] Further studies sug-
gested that the underlying Schlenk equilibrium is more complex and
involves structures such as RMgCl(THF)n, MgR2(µ-Cl)2Mg(THF)5/4

and RMg2(µ-Cl)3(THF)5. [80,81] Comparing these studies highlights how
important correctly modelling the solvent is to fully capture the picture
of the Grignard reagent. Due to its high reactivity Grignard reagent
has to be handled in organic solvent, the most popular experimental
and industrial ones are tetrahydrofuran and diethylether.

Ebullioscopic point measurement studies suggested that the solvent has
a direct effect on the oligomerization of the Grignard reagents. [76] The
same studies indicated that the product MgX2 and MgR2 species are
mostly monomeric in THF. [76,82] Furthermore, studies using molecu-
lar weight, [83] calorimetric measurements, [84] and NMR and IR spec-
troscopy [77] support the existence of a multitude of different active
species.
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It is, at present, commonly understood that moieties in the generalized
Schlenk Equilibrium can form dimers and higher order oligomers pre-
dominantly by bridging Mg-atoms through halide atoms. This causes
the association between the various moieties, eventually favoring ligand
exchange and in such progression of the Schlenk equilibrium.

3.1. Computational Background

The computational studies on the Grignard reaction available in the
literature have been conducted mostly by means of second-order Møller-
Plesset perturbation theory (MP2) [85,86] [87] and density functional
theory (DFT). [88–90] [91] These studies showed that the dimerization
equilibrium is strongly dependent on the solvent involved [86,88]. Further-
more, it was evidenced that the nature of the bridging ligand strongly
influences the stability and the geometry of the dimer, with a general
preference for two bridging ligands. [85,92] DFT studies also evidenced
that the dimerisation degree decreases with increasing solvation. [90]
Due to its large costs, computational studies have either taken into
consideration ideal gas-phase reactions [93], or included solvation by con-
tinuum models [94]. Typically, the solvent molecules explicitly included
in the models have been restricted to the ones in the first solvation
shell of the Mg atoms. In most cases, the total number of ligands
to the metal center has been systematically fixed to four, which is
the usual coordination number of Mg in metallo-organic compounds.
Crystallographic studies [95,96] and recent computational data [89] have
shown the existence of stable pentagonal and octahedral Magnesium
halides with respectively three or four THF molecules in the solvation
shell of the metal.
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3.1.1. Computational Details and System Setup

The previous crystallographic [95,97,98] and computational studies [89] com-
putational clearly show that taking solvent into account explicitly is very
important also beyond a tetrahedral geometry. In order to further inves-
tigate the dynamic and predominant species of the Schlenk-equilibrium
there are multiple options to take advantage of the advancement in
computational power achieved over the last decade. Firstly, one option
is to cover a wide range of structures, halides and organic residues
and investigating those using MP2 and DFT static calculations. The
downside here lies within the cost associated when wanting to extend
explicit solvation past the first solvation shell. Also the image obtained
is static and transitions can only be investigated between predetermined
structures. Secondly, there is investigation using ab initio molecular
dynamics simulations (AIMD). The downside here lies with having
our AIMD studies be limited to a specific Grignard reagent, if solvent
effects past the first solvation shell shall be taken into account.

As our emphasis lies on extending the picture of the Schlenk equilib-
rium dynamics as well as in further investigating the role of the solvent,
we chose the latter option, using DFT static calculations of selected
structures, identified as Free Energy Surface (FES) minima by AIMD.
AIMD has been shown to be especially appropriate to study processes
in the liquid phase. [63,99] For example, this technique was used to study
structural properties of various metal ions in solution, including Na, [100]
Mg, [101,102] or Co and Ag. [103] Using dynamic simulation furthermore
allows to explore the relevant conformations of the system rather than
having to pre-select from the many different structures have been pro-
posed for the Grignard reagent. [80,81,97,104] The system that I describe
has around 500 atoms and when comparing to Figure 1.2 we find that
this systems lies well within the scale of AIMD simulations. For the
problem at hand it is not possible to simply sample the entire poten-
tial energy surface. Therefore, I employ the Metadynamics enhanced
sampling method.
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The combination of AIMD and Metadynamics has been effectively used
to capture solvent effects in numerous organic [105,106] and organometal-
lic reactions. [107,108] Larger metallo-organic systems have been treated
coupling Metadynamics, AIMD and molecular mechanics schemes. [63]
This approach was used to describe for example electronic solute-
solvent coupling in photo-excitation dynamics of ruthenium metallor-
ganic compounds, [109] the reaction mechanisms of hydrolysis in zinc
β-lactamases, [110,111] the redox properties of copper in azurin, [112] the
functional role of Mg2+ ions in ribonuclease H [113] and the design of
organo-ruthenium anticancer complexes. [114] In our studies we chose
the Grignard reagent MeMgCl to study with the help of AIMD and
Metadynamics in THF solvent.

3.1.2. System Setup and Simulation Details

The Schlenk Equilibirium was investigated through characterizing the
monomeric reactants, monomeric products and exploring the differ-
ent dimeric species that make up the intermediates. Three different
systems, containing each, one molecule of either CH3MgCl, MgCl2 or
Mg(CH3)2 surrounded by 25 molecules of THF in an cubic, periodic box
of dimensions 15.0 x 15.0 x 15.0 Å3, were built. The number of solvent
molecules was set to match the experimental density of THF at room
temperature. [115] The initial coordinates of THF were obtained from
running a 20 ps-long equilibration in a similar box containing the pure
solvent. The monomers replaced one solvent molecule each. Afterwards,
all systems were relaxed for 15 ps in the microcanonical ensemble at
energies matching an average temperature of 300 K. Relaxation was
performed using the canonical sampling/velocity rescaling (CSVR) ther-
mostat using a time constant of 10 fs. Equilibration was carried out
until the temperature of the system oscillated around the target value
of 300K. Production runs were simulated in the NVT ensemble at 300
K. We employed the Nose´ -Hoover chain thermostat with a chain
length of 3 and time constant 1 ps for the data production. [43,56,116]
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Figure 3.1. – Simulation box used in this study. The atoms of Grignard
reagent are represented by spheres and the THF solvent molecules by sticks in
licorice and red. Hydrogen atoms of THF are not shown for clarity.

The dimeric (MgCH3Cl)2 species were simulated in an orthorhombic
periodic box of dimensions 25.2 x 15.0 x 15.0 Å3, containing 42 THF
molecules. The system contained initially two monomeric MgCH3Cl
molecules. Dimerisation was induced by application of a bias potential
in 10 ps of NVE simulations. The systems were thermalized following
the same protocol as described for the monomers. A larger box of
dimensions 25.2 x 20.0 x 20.0 Å3 with 74 THF molecules was also
simulated to verify eventual bias due to finite-size effects. We checked
three different parameters obtained from Metadynamics simulations of
dimeric species in the respective boxes; the average geometry, radial
distribution function of THF around the central Magnesium atoms and
the THF diffusion coefficient. Firstly, the average geometry is captured
in Table 3.1.
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Table 3.1. – Geometric parameters for the system containing 42 and 74 THF
molecules.

Bond distances [Å] 42-THF system 74-THF system
Mg-Cl (terminal) 2.38 (0.14) 2.36 (0.10)
Mg-Cl 2.59 (0.29) 2.56 (0.21)
Mg-CH3 (terminal) 2.14 (0.10) 2.15 (0.10)
Mg-CH3 2.35 (0.20) 2.36 (0.20)
Mg-THF 2.28 (0.24) 2.30 (0.26)

Angles [o] 42-THF system 74-THF system
Mg-Cl-Mg 82.7 (6.0) 81.2 (5.9)
Mg-CH3-Mg 73.2 (6.5) 74.0 (6.4)

All differences in the geometrical parameters are within the standard
deviation. Secondly, the radial distribution function is shown in Fig-
ure 3.2.

Figure 3.2. – Radial distribution function of THF around the two Magne-
sium centers for the system containing 74 THF in a 25.2 x 20 x 20 Å3, box
compared to the system containing 42 THF in a 25.2 x 15 x 15 Å3, obtained
from Metadynamics runs of the dimeric species. The distance plotted is the
Magnesium to Oxygen of THF distance.

The agreement of the first peak and depth of the first minimum in
Figure 3.2, shows how the Mg-coordination as well as the exchange rate
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between solvating THF-molecules is practically unaffected by the size
of the simulation box. Thirdly, The diffusion coefficient D for the THF
molecules, defined as:

D =
δσ2(t)

δt
(3.1.1)

where σ2 is the mean square deviation of the center of mass of the
THF molecules, is equal to D= 0.137 Å2, ps −1 (with a coefficient of
determination for the linear fit R2 =0.976) and D=0.153 Å2, ps −1

(with a R2 = 0.91), for the system with 42 and 74 THF.

These three parameters show that a simulation within the smaller
simulation box is preferable as it lowers the computational cost while
still correctly reproducing essential structural and dynamical features
of the system.

Ab-initio Molecular Dynamics simulations The electronic problem was
solved by DFT [5,6] using the Perdew-Burke-Ernzerhof (PBE) approxima-
tion to the exchange correlation functional. [43] Kohn-Sham orbitals were
expanded over mixed Gaussian and plane-wave basis functions. [116] The
DZVP basis set for first and second row elements and Mg, and a molec-
ularly optimized basis set for the chlorine atoms were employed. [117]
The auxiliary plane wave basis set was expanded to a 200 Ry cutoff.
The core electrons were integrated out using pseudopotentials of the
Goedecker-Teter-Hutter type. Dispersion forces were accounted for
using the D3 Grimme approximation (GD3). [118] AIMD simulations
were run over the Born-Oppenheimer surface, with a time-step of 0.25
fs, optimizing the energy gradient to a threshold of 10−5 au.

Free-energy calculations The exploration of the conformational
and reactive landscape, and determination of the corresponding free-
energy surface, was performed by coupling AIMD to metadynamics
simulations. [63,119] The solvation of different chemical species observed
during the AIMD runs, as well as the transmetallation reaction, were
investigated by independent metadynamics runs. All collective variables
(CVs) employed in this study were defined as the coordination-number
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of specific ligand species to individual Mg atoms. The coordination
number of a species X around Mg at a given time t (CN[X](t)) was
evaluated according to the formula shown in equation 1, as defined in
previous works:

CN [X](t) =

Nx∑
i

1−
(
di(t)
d0

)p
1−

(
di(t)
d0

)q (3.1.2)

Where NX is the number of species X present in the system, di is
the distance of the ith atom X from Mg, and d0, p and q are free
parameters specific to each CV(see Chapter 7 Section 7.1). The time-
dependent bias potential was formed by sets of Gaussians of 0.25 kcal
mol−1 height and 0.04 width for coordination variables and added every
50 steps of AIMD for the di-chloride bridged system. Additional details
of the Metadynamics parameters used as well as the associated errors
is given in Table 7.1 and Table 7.2 of Section7.1 The metadynamics
simulations convergence was confirmed by checking that the calculations
reached the diffusion limit within their wall constraints; statistical
errors, computed according to references, [120,121]are within 1-3 kT (see
Table 7.2). AIMD runs were computed using the QUICKSTEP [17,117]

module of the CP2K 2.5.1 package. Trajectory analysis was performed
using the tools available in the VMD 1.9.2 package. [122]

Static calculations and electronic structure analysis Chemi-
cally relevant geometries sampled by AIMD were fully optimized at the
DFT(PBE+GD3) level by using the Gaussian09 software package. [123]
Mg, C, H and O were described with the all-electron double-ζ 6-31+G**
basis set. [124–126] Vibrational frequencies were computed analytically
to verify that the stationary points found were energy minima. In
addition to the solvent molecules bound to Mg, implicit solvation was
modeled by using the density based solvation model (SMD). [127] In
selected cases, Gibbs energies were obtained for T = 298.15 K and p
= 1 atm. In the bimolecular steps, these energies were corrected for
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the 1M standard state (T = 298.15 K and p = 24.465 atm). Donor-
acceptor interactions were explored by means of natural bond orbital
calculations (NBO6 version). [128,129] The nature of these interactions
was determined by computing the associated natural localized molecular
orbitals (NLMO). [130]

3.2. Results

The investigation was restricted to monomers and di-nuclear species
and we have excluded possible higher order aggregates as previous
studies have evidenced that average aggregation state in THF is very
low, with monomeric species being dominant. [76]

Solvation states of the Monomeric structures During 40 ps of
AIMD simulations at 300K, both CH3MgCl and (CH3)2Mg assumed
solely a tetrahedral conformation, with two THF molecules in the
solvation sphere of the Mg atom.

Figure 3.3. – Optimized structures of MgCl2 (left) and MgMe2 (middle)
and MgMeCl (right) solvated in THF in Licorice representation. The dotted
black lines represent coordination of the ligands to the Mg-center.

On the contrary, both tetrameric- and pentameric-coordination were
observed for MgCl2. The nature of the solvation of MgCl2 was further
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investigated by metadynamics simulations, using the coordination num-
ber of oxygen atoms of THF to Mg as collective variable (CV). From
our calculations, we estimate that the most likely solvation state is
MgCl2(THF)3 arranged in a trigonal-bipyramidal structure (Figure 3.3
).

In fact the MgCl2(THF)3 trigonal-bipyramidal structure is about 1.6
kcal mol−1 and 2.8 kcal mol−1 more stable than thetrahedral or octa-
hedral complexes involving two and four THF molecules, respectively.
The activation energy barriers separating the different solvation states
are both less than 7 kcal mol−1. This allows for constant exchange
between different solvation states at room temperature. The moieties
are be present in an equilibrium the ratio of 0.07:1:0.01 for the di-,tri-
and tetra-solvated complexes, respectively. The average solvation state
for MgCl2(THF)x is given for x=2.9.

We further re-optimized the minima on the FES obtained from Meta-
dynamics using single point DFT calculations. All solvation structures
found found on the FES also showed to be distinct minima on the PES.
To obtain insight on the topological difference between CH3MgCl and
(CH3)2Mg, and MgCl2(THF)x we used Natural Bond Orbital (NBO)
analysis on the optimized structures. The Mg contribution on the lone
pairs NLMO of CH3 and Cl,ζMg, is shown in Figure 3.4. This analysis
showed that Cl had lower electron donation to Mg than CH3. This is
best evidenced by the difference in Mg contribution on the lone pairs
NLMOs of CH3 and Cl,ζMg, which are 10.2% and 5.3%, respectively.
Therefore, the MgCl2(THF) system is more likely to gain additional
THF-coordination to improve screening of the Magnesium charge.

Our NBO Analysis reveals another reason for the stability of MgCl2(THF)3.
Adding one molecule of THF solvent to MgCl2(THF)2 increases the
overall electron donation, i.e. stabilization of the positive charge on
the central Mg-atom, whereas a second solvent molecule decreases the
total electron donation, as the geometry becomes enlarged and the
total electron donation from both THF-solvent as well as Cl-ligands
decreases.
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Figure 3.4. – Lone pair delocalization into empty orbitals of Mg. (χ(Mg))

Solvation states of the Dimeric structures The initial structure
for investigation of the Dimeric structure was obtained by placing two
molecules of Grignard reagent, CH3MgCl, 9.5 Åapart in an orthorhom-
bic box of 25.2 x 15.0 x 15.0 Å3 dimensions. To accelerate dimerization
a bias restraining potential was placed on the central Magnesium atoms.
The dimeric structures bridged by two Chloride atoms, was formed as
the distance between both Magnesium atoms approached 5.5 Å.

3.3. The Schlenk equilibrium

The Schlenk equilibrium is achieved via exchange of Chloride/organic
group. In our case this is a methyl group that has to be exchanged to
with a chloride atom to complete the Schlenk equilibrium. The dynamic
processes of this exchange had been elusive and not much is known
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about via which path of intermediates this exchange process occurs.
Therefore, we started the investigation from the dichloride-bridged
structure, that had been reported in multiple previous studies, [104,131]
and used Metadynamics to explore the further FES landscape. We
used as CVs the THF solvation number on one arbitrary Mg (CV1)
and the difference in methyl coordination between the two Mg atoms
(CV2). These CVs were chosen to project the free energy change as a
function of methyl/chloride exchange and the local solvation of Mg.

Figure 3.5. – Free-energy surface of the Schlenk-Equilibrium. The collective
variables for this representation are the difference in Mg-CH3 coordination
number between Mg2 and Mg1 (CV1) and the THF-coordination number to
Mg1 (CV2). The chemical structures drawn in the figure depict the most
representative species obtained for wells A, B, C, D and E.

The resulting FES (Figure 3.5) shows five separated wells (A,B,C,D and
E) that can be identified according to the nature of their Mg bridging
groups. The most abundant structures classifying each well are shown
alongside the FES. Wells A and B correspond to dichloro-bridged
species, C and D correspond to methyl-chloride-bridged structures,
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while well E represents monochloride bridged structures of the formula
ClMg(µ-Cl)MgMe2. The structures in well E are a shallow minimum
that occurs prior to dissociation of the dimer into the product monomers
MgCl2 and Mg(CH3)2.

The dimers shall henceforth be referred to via the notation DXY
ij , where

D stands for dimmer, i and j are the number of THF molecules coordi-
nated to Mg1 and Mg2, respectively, while X and Y are the bridging
ligands. DXY describes the ensemble of all solvation structures with
the same bridging ligands. From Figure 3.5 we can deduct, that ligand
exchange process occurs via the path B-A-C-D-E. The transformation
from Well B to D is statistically unlikely, because the energy barriers
for the A-C and C-D transition are 8 kcal mol−1 and 6 kcal mol−1,
respectively, while the A-B transition is almost barrier-less. The B-D
transition state, however, lies 13 kcal mol−1 higher than well A. The
preference for this path was further investigated by closer examination
of the solvation structures of DClCl and DClMe.

The solvation structures of DClCl In order to identify the indi-
vidual structures captured in well A and B more closely (Figure 3.5),
we used metadynamics using the coordination number of the oxygen
atoms of THF to each of the Mg atoms as CVs. This ensures that all
different solvation structures can be captured as individual FES wells.

The simulation revealed that there are three different solvation states,
the resulting FES is shown in Figure 3.6. The lowest energy state is the
symmetric dimeric structure in which each Mg atom is tetra-coordinated
DClCl

11 . This state is 1.3 kcal mol−1 and 2.7 kcal mol−1 more stable
than DClCl

22 and DClCl
12 , respectively. DClCl

12 and DClCl
21 are degenerate

states. Geometries with higher coordination of THF molecules could
be observed during simulation, but they are more than 5 kcal mol−1

higher in energy than DClCl
11 and therefore expected not to be present

in relevant quantities at room temperature.
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Figure 3.6. – Solvated DClCl structures found by metadynamics simulations
(left) and corresponding FES (right). CV1 and CV2 are defined as the coordi-
nation numbers of THF at Mg1 and Mg2, respectively, following Equation3.1.2

The Grignard reaction is usually carried out at mild temperatures, there-
fore our investigation is restricted to simulations at 300K. In DClCl

22 Mg
is penta-coordinated, while in DClCl

12 the structure is asymmetric. The
activation energy between all those species is lower than 5 kcal mol−1,
such that species are inter-converted rapidly at room temperature and
we can assume equilibrium. Analysis of the interconversion from DClCl

11

to DClCl
12 reveals that the addition of THF strictly occurs anti to one

of the chloride atoms, giving rise to a trigonal-bipyramidal geometry.
Here the bridging Chloride atoms occupy an axial and an equatorial
position each. The Clax-Mg bond was significantly longer than the Cleq
bond, resulting in transient, reversible cleavage of the Clax-Mg. The
resulting singly chloride-bridged structure could be observed during
our AIMD trajectory. Statistical analysis of said AIMD trajectory is
presented in Figure 3.7
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Figure 3.7. – (a) Mg-Cl distance distributions in DClCl dimeric structures.
(b) Mg1-Cl (blue) and Mg2-Cl (red) distance distributions in DClCl

12 . Mg-Cl
bond cleavage is observed when the Mg-Cl distance is larger than 3.7 Å.

Expectedly, the increase in solvation is linked to an increase in average
Mg-Cl bond distance. Interestingly, Mg-Cl bond cleavage is only ob-
served for the asymmetric DClCl

12 structure and not for the even more
solvated DClCl

22 structure. In confirmation with visual inspection of the
AIMD trajectory bond cleavage is present for Mg-Cl bond distances
above 3.7 Å. Bond distances lower than this can be attributed to molec-
ular vibrations or geometrical rearrangement. The number of structures
with bond distances above 3.7 Å for DClCl

11 and DClCl
22 are vanishingly

small. Figure 3.7 b) shows that cleavage of the Mg-Cl bond also strictly
occurs on the penta-corrdinated Mg atom. Trajectory analysis confirms
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that this bond breakage occurs solely with the Clax bridging atom.
Though the asymmetric structure is expected to be present only in
1% of the room-temperature samples, these monochloride bridged, un-
symmetrically solvated structures are key to progression of the Schlenk
equilibrium. We proposed that bond breaking constitutes the first step
of ligand exchange.

Due to the importance of this step we employed further NBO analy-
sis of the DClCl structures and confirmed that pentacoordinated Mg
atoms receive the least electron donation from Cl (Mg 6%), compared
to (Mg 7.5%) in the tetrahedral case. Overall, as can be seen from
Figure 3.8, the penta-solvated Mg atoms experience total electron
donation.

Figure 3.8. – Lone pair delocalization into empty orbitals of Mg. (χ(Mg))
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Especially the axial Chloride had very low contribution in the Mg
lone orbitals. (Mg 2%). This in turn implies overpolarization of the
Clax-Mg2 bond and induces opening of the four-membered ring. The
difference in electron between Clax and Cleq also explains the selective
Clax-Mg2 bond cleavage.

Our DFT calculations predict that for a penta-coordinated Mg atom the
interaction between Mg and the axial Chloride atom is weaker than with
the equatorial Chloride atom. From NBO, the Mg-Clax in both DClCl

12

and DClCl
22 are predicted to be equally weak. We do not observe this

behavior in our AIMD simulations. Instead of the trigonal-bipyramidal
geometry observed for the penta-coordinated Mg atom in DClCl

12 , the
geometry of DClCl

22 was observed to be square pyramidal in our AIMD
simulations. Here a THF molecule occupies the apical position. Herein
lies a discrepancy within the structures obtained from AIMD and the
PES minima obtained from DFT optimization. While the geometrical
features for DClCl

11 and DClCl
12 are reproduced by DFT optimizations,

the geometries for DClCl
22 differ. AIMD shows only distorted square-

pyramidal geometries for the Mg-centers, while DFT predicts trigonal-
bipyramidal geometries. This discrepancy on the solvent coordination
is due two factors. On the one hand the explicit consideration of
solvent beyond the first solvation shell has structural implications
on the inner solvation shell. These effects become significant for the
geometry of the more solvated and more flexible DClCl

22 . On the other
hand dynamics show that solvent molecules in DClCl

22 are interchanged
through an associative mechanism via a transient octahedral structure.
The dissociation of said octahedral structure naturally results into a
square pyramidal geometry.
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αdyn αst βdyn1 βst1 βdyn2 βst2

DClCl
11 167(8) 169.7 89(5) 91.3 89(5) 91.6

DClCl
12 166(9) 165.4 91(7) 92.1 82(6) 83.9

DClCl
22 165(11) 160.6 94(6) 84.1 94(6) 84.2

Figure 3.9. – Average angles (αdyn, βdyn
1 and βdyn

2 , in degrees) with its standard
deviation (in parenthesis) obtained from cluster analysis of the metadynamics
trajectory, and optimized angles from DFT calculations with implicit solvent
(αst, βst

1 and βst
2 , in degrees).

Geometry analysis show, that for DClCl
22 , DClCl

12 and DClCl
22 the equilibrium

values for the Cl-Mg-Cl bond angle are close to 90° (Table 1), even
though the coordination geometries of the Mg atoms in the structures
are different from each other. As an additional structural feature, it
is observed that, during AIMD simulations, the four atoms of the
Mg(µ-Cl)2Mg moiety do not lie in the same plane. The average angles
between the two MgCl2 planes are reported in Figure 3.9.

The solvation structures of DClCMe In order to identify the indi-
vidual structures captured in Well C and D more closely (Figure 3.5),
we used metadynamics using the coordination number of the oxygen
atoms of THF to each of the Mg atoms as CVs. This ensures that all
different solvation structures of the chloride/methyl-bridged structures
can be captured as individual FES wells. Three low-energy solvation
structures were observed on the FES, which is shown in Figure 3.10.
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Figure 3.10. – Solvated DClCl structures found by metadynamics simulations
(left) and corresponding FES (right). CV1 and CV2 are defined as the coor-
dination numbers of THF at Mg1 and Mg2, respectively, following Equation
3.1.2.

The lowest energy solvation structure is DClMe
11 with both Mg centers

being tetrahedrally coordinated. The other two low-energy structures
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are DClMe
21 and DClMeTHF

11 , which are about 3 kcal mol−1 higher in energy
than the DClMe

11 . The energy difference between those two structures is
only 0.5 kcal mol−1 and the activation energy for the transition between
both states is about 2 kT. DClTHFMe

11 is bridged not only by Cl and Me,
but also by a THF molecule. A fourth structure DClMe

21 was observed,
but it lies about 5 kcal mol−1 higher than DClMe

11 and is therefore only
present at trance amounts at room temperature. The barriers between
DClMe

21 , DClTHFMe
11 and DClMe

12 are all less than 4 kcal mol−1, allowing
for rapid exchange of the structures. The most DClMe

11 is separated from
these structures by a barrier of about 6 kcal mol−1. For the DClMe the
tetra-solvated Mg-centers occupy a tetrahedral geometry, whereas the
penta-solvated all assume trigonal-bipyramidal geometry. Since the
structures are no longer point-symmetric about its center we sought
after the implications of this asymmetry, which had shown to be quiet
essential for the dichloro-bridged structures. Firstly, during trajectory
analysis, we noticed that the bridging methyl interacts differently with
both Mg centers. Secondly, the FES in Figure 3.10 shows different
accessible solvation states for both Mg-centers. Mg1 having a terminal
chloride, Mg2 having a terminal methyl group. In order to quantify
the way the bridging methyl group interacts with the Mg-centers, we
measured the direction of the pz orbital axis relative to the two C-Mg
directions (Figure 3.11).
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Figure 3.11. – Orientation of the methyl group in DClMe as a function of
the solvation state, represented by ψ1 andψ2. A larger ψ angle is indicative of
a stronger Mg-CH3 interaction.
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In both DClMe
11 and DClMe

12 , the pz orbital is oriented toward Mg1-Cl
moiety, with average angles for ψ1 of approximately 141° and 149°,
respectively. In these two structures ψ2 has an average value of 127°
and 128° indicating a poorer interaction of the bridging methyl with
Mg2 pz orbital. In DClTHFMe

11 the ψ1 and ψ2 average values are 145°
and 136°, respectively. For DClMe

21 the bridging methyl is almost equally
shared between the two Mg center, with average ψ1 and ψ2 angles
are 137°. The difference between the ψ values rises as THF-solvation
is increased on Mg2 and decreases with increasing solvation on Mg1. In
order for the transformation from CH3MgCl to MgCl2 to Mg(CH3)2 to
be complete the bridging methyl group has to be entirely transferred
to Mg2. As additional solvent increases the relative interaction with
Mg2 it facilitate the transfer.

αdyn αst βdyn1 βst1 βdyn2 βst2

DClMe
11 167(11) 175.6 101(10) 103.7 94(7) 100.0

DClMe
12 166(8) 179.4 102(7) 110.6 89(7) 93.2

DClTHFMe
11 165(6) 154.4 103(7) 102.0 96(7) 99.6

DClMe
21 161(7) 172.3 94(7) 100.4 101(7) 102.5

Figure 3.12. – Average angles (αdyn, βdyn
1 and βdyn

2 , in degrees) with its
standard deviation (in parenthesis) obtained from cluster analysis of the meta-
dynamics trajectory, and optimized angles from DFT calculations with implicit
solvent (αst, βst

1 and βst
2 , in degrees).

In order to better understand the reason between the unequal sharing of
the Methyl group and the role of the solvent, we undertook single point
geometry optimizations on the PES using DFT methods for all 4 minima

73



THE SCHLENK EQUILIBRIUM OF THE GRIGNARD REAGENTS

on the FES; DClMe
11 , DClMe

12 , DClTHFMe
11 and DClMe

21 . In agreement with
the AIMD calculations all geometries were obtained as tetrahedral
and trigonal bipyramids (Figure 3.12) for tetra-coordinated and penta-
coordinated center. NBO analysis shows that the bridging CH3 group
donates more strongly to Mg1 (ψMg1 = 5.7, 5.2 and 4.6 %) than to Mg2

(ψMg2 = 3.7, 3.8 and 3.6 %) for DClMe
11 , DClMe

12 , DClTHFMe
11 . For DClMe

21

the donation becomes equal among the two Mg centers (ψMg1 = 4.3 %,
ψMg2 = 4.2 %). AIMD and DFT both predict DClMe

21 to be the species
most likely to yield complete transfer of the bridging methyl group to
Mg2. DFT calculations, shown Figure 3.13, furthermore predict that
the geometry of the other ligands has an influence on the donation of
the bridging Me-group, with an axial THF group providing optimal
conditions for propagation of the Schlenk-equilibrium.

Figure 3.13. – Lone pair delocalization into empty orbitals of Mg. (χ(Mg))

The reaction pathway of the Schlenk equilibrium Summariz-
ing the findings of our 3 different metadynamics studies, the Schlenk
equilibrium reaction pathway can be reconstructed. The pathway is
summarized in Scheme 3.1, going from the Grignard reactant via the
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dimeric intermediates to the product MgCl2 and Mg(CH3)2. All geome-
tries shown in Scheme 3.1 are minima on the FES. From the scheme it
is notable that the Cl/CH3 exchange only occurs via specific solvation
states.

Scheme 3.1 – Orientation of the methyl group in DClMe as a function of the
solvation state, represented by ψ1 andψ2. A larger ψ angle is indicative of a
stronger Mg-CH3 interaction.
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The propagation of the equilibrium starts with the dimerization of
the monomeric Grignard reagent CH3MgCl(THF2) into a dimeric,
dichloride-bridged aggregate DClCl

22 . We estimate that this reaction
is endergonic by 4.9 kcal mol−1 by static calculations. This observation
is in alignment with previous experimental findings. [76]

The doubly penta-coordinated structure is energetically unfavored and
desolvates twice to the most stable, dichloro-bridged structure, DClCl

11 .
After loss of the first solvating THF molecule an asymmetrical dimer
DClCl

12 is obtained. This structure lies about 2.7 kcal mol−1 higher in
energy than DClMe

21 and is therefore also thermally accessible at room
temperature. The asymmetry in solvation, with one Mg-atom being
tetra-coordinated and the other Mg-atom being penta-coordinated
yields interesting electronic properties.

Investigation by AIMD showed that the Mg-Cl bridging bond in DClCl

is only transiently broken in the DClCl
12 solvation state. NBO analysis

confirms that here the Mg-Cl bond interaction is significantly weakened
for the Mg atom solvated by 2 THF molecules. The higher solvation on
Mg2 weakens the Mg2-Cl bond, while the lower solvation on Mg1 makes
it tolerant of an extra anionic ligand. Analysis of the AIMD trajectory
further showed that during every bond Mg-Cl bond breakage of the
DClCl system, the axial Mg-Cl bond of the penta-coordiated Mg-center
in DClCl

12 is broken. The bond cleavage is captured in snapshot 2 of
Figure 3.14 and leads to ligand exchange and formation of the DClMe

12

dimer.
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Figure 3.14. – Snapshots for the methyl transfer reaction in DClCl
12 (Mg1 on

the left hand side and Mg2 on the right for all snapshots): 1) initial DClCl
12

structure, 2) Transition State of the transmetallation reaction, 3) formation of
DClMe

12 , 4) solvent loss to form DClMe
11 , 5) solvent addition to form DClMe

21 , and
6) DClTHFMe

11 . The atoms for the Grignard reagent and the coordinating THF
molecules are depicted in balls and/or sticks and colored according to standard
color codes. Selected neighboring solvent molecules are drawn in thin lines.

A terminal CH3 group is exchanged with a bridging chloride atom In
the process. (Snapshot 3 of Figure 3.14) The resulting DClMe

12 is the
least stable DClMe geometry and rapidly desolvates to the more stable
DClMe

11 , DClMe
21 and DClTHFMe

11 solvation states. DClMe
11 is the most stable

solvation state, while DClMe
21 and DClTHFMe

11 are only about 3 kcal mol−1

higher in energy and therefore thermally accessible at room temperature.
In order for the transmetallation to complete and the products to be
formed, the Mg2-Cl and Mg1-CH3 bonds need to be cleaved. As the
Mg-Cl bonds are stronger than the Mg-CH3 bonds, the Mg1-CH3 has
to be cleaved first. Analysis of the orientation of the bridging methyl-
group and NBO analysis of the bridging lone pair revealed that increase
in solvation is necessary for the methyl-group to be oriented toward
away from Mg1. The most favorable solvation state for this process is
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DClMe
21 , in which the bridging methyl group is equally shared. In this

solvation structure the Mg2-CHax
3 is preferentially broken leading to

the pre-product state, P12 of the Schlenk-equilbirum. This pre-product
state evolves to the products MgCl2 and Mg(CH3)2, completing the
Schlenk equilibrium reaction pathway. We estimate this part of the
reaction to be very fast with a dissociation energy of about -8.7 kcal
mol−1. The dissociation energy was estimated using the thermodynamic
cycle depicted in scheme Scheme 3.2.

Scheme 3.2 – Free energy differences ∆Adyn
1 and ∆Adyn

4 were determine from
metadynamics runs described in the main text. Free energy differences ∆Ast

2 and
∆Ast

3 were determined from static calculations as described in the computational
details. ∆ATotal is obtained as : ∆ATotal = ∆Adyn

1 + ∆Ast
2 + ∆Ast

3 + ∆Adyn
4 .

3.4. Conclusion

The Schlenk equilibrium proceeds from CH3MgCl to MgCl2 and Mg(CH3)2.
The reaction pathway proceeds via various dimeric adducts. We identi-
fied that the pathway does go via the previously identified, most stable
tetra-coordinated Mg species. However, crucial for the propagation of
the Schlenk equilibrium are asymmetrically solvated structures, as they
induce bond-breaking between the Mg-centers and the bridging ligands.
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Conclusion

Thus, the two-step Cl/CH3 ligand exchange is only initiated by DClCl
12

and DClMe
21 . Our studies show that these intermediate structures are

present at low abundance at room temperature and therefore crucial
for understanding an efficient propagation of the Schlenk equilibrium.
We further show that explicit consideration of the solvent is important
to understand the dynamics of the Schlenk-Equilbirium.
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4. Direct Nucleophilic
Attack Vs. Radical
Propagation Mechanism
in the Grignard Reaction

4.1. Introduction

The Grignard reaction is a fundamental, text-book, process used in
organic synthesis to promote the formation of carbon-carbon bonds. [132]
The reaction involves the initial synthesis of the Grignard reagent,
a magnesium-organic compound of general formula RMgX where R
is a organic residue and X is a halogenous element (typically, Cl, or
Br), and the subsequent reaction with an electrophilic species (most
prominently, carbonyl groups: R’C=OR") to form adducts of general
formula RR’R"CO-MgX:

RMgX +R′R′′C = O → RR′R′′CO −MgX (4.1.1)

The reaction occurs strictly in polar-aprotic solvents. Addition of water
is used to hydrolyze the product, yielding the corresponding alcohol. [133]

Despite the fact that the Grignard reaction has been known since
more than one hundred years, its characterization at a molecular level
has remained elusive so far. Difficulties arise from the fact that the
same molecular structure of the Grignard reagent is complex, with
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several organometallic species co-existing in solution according to the
generalized Schlenk equilibrium [74]:

2RMgX � (RMgX)2 �MgR2 +MgX2. (4.1.2)

As a matter of facts, the experimental characterization of such species,
as well as the identification of the most reactive species for the Grignard
equilibrium has resulted so far problematic. [73]

The relative abundance of the various chemical species can be modulated
by varying the concentration, the organic residue or the halide, and the
temperature. Several computational and experimental data available
in the literature indicate that the equilibrium in equation 4.1.2 involves
different intermediate states for the dimer dependent on the choice of
the organic compound, the halide, and the solvent. [90]

The general understanding of the Grignard reaction (equation 4.1.1)
points at a nucleophilic addition to an electrophilic substrate by a metal-
activated nucleophilic carbon. [82] In fact, experiment with substrates
characterized by aryl-conjugated carbonyl moieties yielded products
that are not fully consistent with a nucleophilic addition, while they
could be interpreted as the outcome of a radical-chain propagation mech-
anism. This was evidenced by the formation of pinacol structures in the
reaction of benzophenone or quinones with Grignard reagent. [75,134–136]
A series of studies by Ashby and co-workers further evidenced radical
intermediates and further pointed at a possible competition between the
two mechanisms, influenced by several factors among which the nature
of the solvent, and the chemical characteristics of both the substrate
and the residue. This competition between radical and non-radical
pathway for different organomagnesium cross-coupling reactions could
be demonstrated experimentally using chiral Grignard reagents. [137]
However, it has not been possible to fully characterize the competing
pathways on a molecular level.

Computer modeling is an excellent strategy to complement experi-
mental data, providing clear insights about the molecular details of
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chemical processes in very highly controlled conditions. The constitu-
tion and reactions of Grignard reagents have been investigated in the
past years by different approaches including by second-order Møller-
Plesset perturbation theory (MP2) [85,86]and density functional theory
(DFT). [88–90,131]

Computer modeling has also been successfully applied [87] to the study of
the formation of the Grignard reagent, for which a radical pathway has
been established. [138,139] Furthermore, computational studies have been
used to investigate the character of the Grignard reaction on metallic
surfaces using cluster models [140] as well as using implicit solvation by
dimethylether solvent [131] using DFT calculations.

Recently, we have characterized in detail the Schlenk equilibrium for a
model CH3MgCl Grignard reagent dissolved in tetrahydrofuran (THF).
We determined that multiple chemical species, including, CH3MgCl,
Mg(CH3)2, MgCl2, and higher-order aggregates, co-exists at room tem-
perature. Moreover, we observed that, in the different compounds, the
magnesium centers can accept a variable number of THF in their shell of
first ligands, and that local changes in solvation are directly connected
to the interchange between the chemical species at equilibrium. The
accurate determination of the chemical species present in a solution of
Grignard reagent provides an excellent starting point to investigate the
Grignard reaction, and shed light on the conditions at which the two
nucleophilic or radical mechanisms may be preferred or co-exist.

Here, we employ quantum mechanical calculations and ab initio molec-
ular dynamics to investigate the likelihood of different reactive paths
for the Grignard reaction in the presence of different substrates. We
find that for highly conjugated systems such as fluorenone, that have
the ability to stabilize a radical, the radical pathway is preferred. For
non-conjugated systems, such as acetaldehyde, a non-radical pathway
via nucleophilic addition is preferred. We furthermore find that the
nucleophilic addition reaction shows a clear trend between the different
species of the Schlenk-equilibrium. We find that the most reactive
species in THF solvent are of the kind Mg(CH3)2 and Mg(CH3)2 ·
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MgCl2.

4.2. Computational methods

4.2.1. Homolytic cleavage energies

Benchmarking studies Due to the large size of the systems under
consideration in our study, we employ DFT to determine the electronic
structure of different chemical species. Different exchange correlation
(xc) functionals have been shown to yield discrepancies in the estimation
thermochemistry and kinetics of chemical processes [141] and binding
energies. [142] Therefore, we benchmarked the performance of different
xc functionals against CCSD(T) data.

We benchmarked the quality of DFT calculations using PBE [43], PBE0 [143],
B3LYP [144,145], M062X [146], B97X [147] and TPSSH [148,149] exchange-
correlation functionals (xc) in reproducing the homolytic C-Mg bond
cleavage energy with respect to coupled-cluster (CC) data. The bench-
mark energies were computed over geometries optimized using the
PBE0 functional for the system shown in Figure 4.1, considering both
the whole system, and the CH3· and RR’ClMg· fragments.

Mg

H3C

O Cl

O
H

H

Figure 4.1. – Homolytic cleavage reaction that was used for calibration of the
Exchange correlation method takes place along the dashed line.

The reference CC energies were obtained using single, double and
perturbative triple excitations (CCSD(T)). CCSD(T) calculations were
performed using the PTVZ basis set and frozen core approximation,
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with an energy convergence cutoff to 10−9 Hartree. The calculations
were carried out using the CFOUR package. [150] The DFT energies
were obtained using the 6-31+G(d,p) basis set using the Gaussian09
software package. [151]

Table Table 4.1 reports the homolytic dissociation energies of a model
Grignard reagent bound to formaldehyde. The M062X xc functional
is the best in reproducing CC data, in particular, showing a discrep-
ancy not higher than 1.2 kcal mol−1 in the dissociation energy. Re-
optimization of the structures at the M062X level and consecutively
obtaining the energy heightens the barrier by 1.7 kcal mol−1. The GGA
PBE functional, whose reduced costs are necessary for the ab initio
MD simulations, still show a reasonable performance, even though it
tends to underestimate dissociation energies by 4.2 kcal mol−1.

Table 4.1. – Homolytic dissociation energies of a model Grignard reagent
bound to Formaldehyde evaluated using different levels of theory according to
Figure 4.1.

Functional Basis Set ∆E [kcal mol −1]
CCSD(T) DZ 43.64
CCSD(T) TV 41.44
PBE0 6-31(d,p) 34.59
B3LYP 6-31(d,p) 32.55
M062X 6-31(d,p) 42.69
B97X 6-31(d,p) 39.39
TPSSh 6-31(d,p) 32.48
PBE 6-31(d,p) 37.22

If not explicitly stated otherwise, all electronic structures following
in this paper have been optimized using the M062X functional and
the 6-31 basis set. Dispersion forces were accounted for using the D3
Grimme approximation. [118] The calculations were performed in implicit
THF solvent using the SMD solvent model. [127]
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4.2.2. Ab initio molecular dynamics

Monomeric species We built two different monomeric systems, con-
taining each one molecule of either CH3MgCl or Mg(CH3)2 surrounded
by 41 molecules of tetrahydrofuran (THF) and one molecule of acetalde-
hyde in a periodic box of dimensions 25.2 x 15.0 x 15.0 Å3. The initial
coordinates of THF were generated by 20 ps of ab-initio MD at the
experimental density at room temperature. [115]

Dimeric species The (MgCH3Cl)2 species were simulated in an or-
thorhombic periodic box of dimensions 25.2 x 15.0 x 15.0 Å3, containing
41 THF molecules and one molecule of Acetaldehyde. Two systems
that were obtained as equilibrium structures from our previous investi-
gation [152] were used as starting geometries.

Figure 4.2. – Example simulation Box. Grignard reagent and Fluorenone in
CPK, solvent in Licorice representation, the solvent hydrogen atoms are not
shown in visualization.

Simulation parameters The electronic problem was solved by Den-
sity Functional Theory [5,6,116] using the Perdew-Burke-Ernzerhof ex-
change correlation functional (PBE) [43]. Kohn-Sham orbitals were
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expanded over mixed Gaussian and plane-wave basis functions. The
DZVP basis set for first and second row elements, and a molecularly op-
timised (MOLOPT) basis set for the Chlorine atoms were employed [153].
The auxiliary plane-wave basis set was expanded to a 200 Ry cut-
off. The core electrons were integrated out using pseudopotentials of
the Goedecker-Teter-Hutter type (GTH). [154] Dispersion forces was
accounted for using the D3 Grimme approximation. [118] Ab initio Molec-
ular Dynamics simulations (AIMD) were run over the ground state
potential energy surface, with a time-step of 0.25 fs, optimising the
energy gradient to a threshold of 10−5 au. All systems were first relaxed
for 15 ps in the microcanonical ensemble at a average temperature of
300 K. Then, production runs were simulated in the NVT ensemble at
300 K. Relaxation at the target temperature was first performed using
canonical sampling/velocity rescaling (CSVR) thermostat with a time
constant of 10 fs until the temperature of the system oscillated around
the target value. Then, a Nosé-Hoover chain thermostat with a chain
length of 3 and time constant 1 ps was used for data production. [56–58]

Trajectory analysis was performed using the tools available in the VMD
1.9.2 package. [122]

Constrained Ab initio Molecular Dynamics In Constrained Molec-
ular Dynamics (CMD) the reaction coordinate was constrained using
the Shake algorithm. The Lagrangian Multipliers of the Shake Algo-
rithm were collected every MD Step after equilibration and converged
to a Normal distribution with a steady mean value within 1 ps of
simulations. (Figure 4.3) The activation energy was computed by
trapezoidal integration over the average Lagrangian multiplier from
reactant to transition state, identified as the point along the reaction
coordinate at which the average constraint force is zero. The reaction
coordinate used for the investigation of the nucleophilic attack is the
methyl carbon-carbonyl carbon distance.
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Figure 4.3. – The Lagrangian Multipliers converged to a Normal distribution
with a steady mean value within 1ps of simulations.

4.3. Results and Discussion

4.3.1. Homolytic bond cleavage

Reactivity trends for different substrates We investigated the
change in the homolytic CH3-Mg cleavage energy when different sub-
strates are bound to the Grignard reagent. Specifically, we compared
formaldehyde, acetaldehyde, carbonyl flouride and fluorenone.
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Organic Carbonyl A B C D E
Formaldehyde 45.1 -3.1 -14.8 33.4 30.3
Carbonyl Flouride 35.1 -6.4 -16.7 24.8 18.4
Acetaldehyde 51.3 -0.3 -13.6 37.9 37.7
Acetaldehyde/Mg(CH3)2 45.2 1.6 -9.3 34.3 35.9
Fluorenone 26.7 -2.2 -16.2 12.7 10.5

Figure 4.4. – Free energies (∆G) for the monomeric Grignard reagent cal-
culated according to the reaction scheme above, reported are in [kcal mol−1].
In the Acetaldehyde/Mg(CH3)2 system the chloride is replaced with a methyl
group.

Figure 4.4 reports the free energies for the homolytic cleavage reaction
for the various systems computed as the difference between the change
in the electronic energy and standard entropic corrections. In all cases,
our data show that the complex between the Grignard reagent and
the substrate coexists at room temperature with different solvation
structures, yielding both a tetrahedral or pentahedral coordination for
the Mg atom. On the contrary, the radical product exists strictly in a
tetrahedral form, with the pentahedral coordination at least 10 kcal
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mol−1 higher in free energy for all species.

The presence of progressively more electron-withdrawing groups at-
tached to the carbonyl (CH3 < H < F) facilitates the release of the
CH3· radical from Mg. The reaction is even more facilitated by coupling
the carbonyl to an aromatic moiety like in fluorenone.

Figure 4.5. – Spin density of the homolytic cleavage product for (Top Left)
Formaldehyde, (Top Right) Carbonyl Fluoride, (Bottom Left) Acetaldehyde
and (Bottom Right) Fluorenone.

Figure 4.5 reports the localization of the spin density on the carbonyl
moieties for the four different substrates. The presence of electron-
releasing substituents forces a higher spin density localization on the
carbonyl moieity; on the contrary, fluorine atoms facilitate its delo-
calization. This effect is prominent in fluorenone, where the unpaired
electron is spread over the extended aromatic system.
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O
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R
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Organic Carbonyl Carbonyl
Formaldehyde 1.04
Carbonyl Flouride 1.04
Acetaldehyde 1.15
Fluorenone 0.60

Figure 4.6. – Spin densities on the carbonyl carbon.

4.3.2. Nucleophilic attack

The energies reported in Figure 4.4 indicate that formation of a radical
species is very unlikely for non-aromatic substrates. On the contrary,
binding to fluorenone makes a homolytic cleavage of the C-Mg bond
feasible for a relatively low energy. To determine the feasibility of
the radical mechanism, we computed the activation energy for the
competing nucleophilic attack pathway. The reacting complexes were
built from the structures of the Grignard reagent obtained in a previous
study [152], and are shown in Figure 4.7.
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Figure 4.7. – Structures investigated using Constrained Molecular Dynamics.
The arrows indicate the path of nucleophilic attack investigated. The activation
energy for the nucleophilic attack in each of the structures is detailed in
Figure 4.8.
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Figure 4.8 reports the activation free energies computed by CMD for
the different complexes. We find that the more electron donating methyl
ligands there are on the magnesium center, the lower the activation
energy is for the nucleophilic attack. This trend in activation energy
persists for monomeric as well as dimeric Grignard reagent species.
Furthermore, the nucleophilic attack from a terminal ligand is preferred
over the one from a bridging ligand ( Figure 4.7). This behavior confirms
our previous study where it was shown that the free electron pair of
the bridging methyl group is shared between the magnesium centers
and points away from the remaining ligands. [152]

System A B C D E F G
Activation Energy [kcal mol −1] 6.6 8.7 12.9 22.6 13.1 6.4 14.6
TS distance [Å] 2.57 2.54 2.38 2.22 2.37 2.63 2.48
Distortion angle [o] 10.8 12.8 14.2 18.3 14.5 10.7 14.3

Figure 4.8. – Dissociation energy, estimated TS distance and distortion angle
obtained for the nucleophilic attack for the structures in Figure 4.7. The
transition state distance was estimated by linear extrapolation of the forces
obtained from CMD taken at intervals of 0.1 Å. The distortion angle is with
respect to the ideal geometry of a sp2 hybridized system.

Analysis of the TS geometry shows that as the more reactive species have
a more reactant-like transition state, with a longer C-C distance and a
more planar geometry of electrophilic carbonyl carbon. Comparing the
same Grigard reagent structure, comparing different substrated (for
example,systems A - G) we find that for the most reactive acetaldehyde,
the distortion angle is smaller than for the bulkier fluorenone.

The nucleophilic attack is most probably catalyzed by monomeric Grig-
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nard reagents, as these do not only show the lowest activation energy
but also constitute the most abundant species in THF-solvent. [152] For
example, structure F ( Figure 4.7), which shows a comparable energy
of activation with respect to dimethylmagnesium, was found in our
previous study to be energetically unfavored by about 8 kcal mol −1

with respect to monomeric geometries, and it is therefore significantly
less abundant in solution.
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4.3.3. Nucleophilic attack vs Homolytic cleavage

The determination of the preference for the nucleophilic attack over a
radical mechanism for the Grignard reactions depends on the relative
height of the respective activation energies.

The homolytic bond cleavage energy represents the highest possible
activation energy for a radical reaction producing a free methyl radical
in solution. In that case, this highly energetic species is expected to
recombine either to a free substrate, or to a substrate bound to a
Grignard reagent. In both cases, we find that the overall reaction is
highly exothermic by ∼ -50 kcal mol−1. ( Figure 4.9):
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Organic Carbonyl 1 2a 2b 2c
Acetaldehyde 37.9 -54 -21 -48
Fluorenone 12.7 -52 -10 -58

Figure 4.9. – Energies (∆E) of the radical propagation pathway in [kcal
mol−1].

In fact, a radical mechanism may require even lower activation barriers
if the initial formation of the radical is followed by a rapid recombination
with the substrate within the same solvation cage, avoiding the release
of the relatively unstable free methyl radical.
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System A B C E G
Radical dissociation energy [kcal mol −1] 35.9 37.7 63.2 34.5 12.7
Non-radical activation energy [kcal mol −1] 6.6 8.7 12.9 13.1 14.6
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Figure 4.10. – (Top) Dissociation and activation energy obtained for the radi-
cal and non-radical pathway for the structures shown in Figure 4.7, exemplified
in (Bottom) for structure E.

Regardless of the different Grignard reagent structures, the radical
mechanism for an alkyl carbonyl like acetaldehyde seems extremely
unlikely. In fact, the activation energy for the radical pathway is in all
cases above 30 kcal mol−1. This contrasts the very favorable activation
energy for the nucleophilic addition, which can be as small as 6.6 kcal
mol−1. We remark that the activation free energies for the nucleophilic
attack were computed by AIMD using the PBE functional, while the
radical formation energies were computed with the M062X one. For
a better consistency between the data, we estimated the total energy
difference between the reactant and TS during the nucleophilic attack
using the two functionals, finding that, although the geometries are very
similar, PBE underestimates the barrier by ∼3.3 kcal mol−1 compared
to M062X. This discrepancy is well below the energy differences found
between the two pathways, and thus it does not change the qualitative
picture.
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For fluorenone, we find that the radical pathway is favored, even though
the difference between the relative barriers is less pronounced. The
radical formation is in particular stabilised by the large delocalization
of the unpaired electron over the conjugated π system, while the nucle-
ophilic attack is disfavoured by the necessary ditortion of the geometry
of the carbonyl that needs to break the same conjugation.

4.4. Concluding remarks

Our study confirm the hypothesis that the Grigard reaction may proceed
both by a nucleophilic addition and by a radical mechanism. We found
that the preferences of either of the two mechanisms is associated to
the nature of the substrate. In particular, extended aromatic moieties
like in fluorenone are crucial for the initial stabilization of an unpaired
electron that can initiate the radical cascade. In particular, they are in
agreement with previous studies that have observed radical formation
in the Grignard reaction of aromatic ketones such as Benzophenone [77]
and Fluorenone. [155] For non-aromatic carbonyls where the radical can
be localized solely on the carbonyl carbon, strongly negative inductive
effects, for example by electronegative substituents, are needed to
lower enough the energy of the species. We furthermore found that
the nucleophilic addition reaction shows a clear trend between the
different species present in the Schlenk-equilibrium. Specifically, the
most reactive species in THF solvent are Mg(CH3)2, CH3MgCl and
Mg(CH3)2 · MgCl2, respectively.

The presented data shed light on some complex mechanistic aspects of
the magnesium chemistry in solution, and can provide solid ground for
future studies on catalytic metalloorganic chemistry.
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5. Modelling the
self-assembly of
alpha-tocopherol

5.1. Introduction

Vitamin E is known as an important part of a healthy diet. It acts as
an antioxidant preventing oxidative stress in mitochondrial membranes
and is capable of quenching singlet oxygen as well as capturing other
radical species. [156–158] Vitamin E deficiency can lead to, for example,
impairment of the immune response and neurological problems, such
as Ataxia. [159–161] α-tocopherol transfer protein (α-TTP ) is the liver
factor responsible for the retention of RRR-α-tocopherol (α-tol), which
is the active isoform of vitamin E, in the human body. [162–164] The
mechanism by which retention works is α-TTP solubilizing α-tol from
the external leaflet of maturing endosomal compartments, promoting
its release into the blood.

Structural studies [165,166] indicate that α-TTP is active as a monomer,
alike other transporters of its family. [167–169] However, the mechanism
or cascade of mechanism by which α-tol is secreted into the blood, and
consecutively absorbed into the target tissues, is currently not well
understood. A proposed possible pathways for the secretion and blood
transport of α-tol has been suggested to follow the enrichment into the
leaflets of the plasma membrane by a lipid-exchange mechanism, [170,171]
and consecutive transport into the blood by aggregating to very-low
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density lipoprotein vesicles. [163]

The involvement of α-TTP into α-tol trafficking has not been clearly
defined. In a recent work, Arai and coworkers have suggested that
transfer of α-tol to the plasma membrane is coupled to the extrac-
tion of phosphatidylinositolphosphates from the same membrane by
α-TTP. [164] They also suggested that lipid-exchange at the plasma
membrane may involve higher order aggregates of α-TTP than the
monomers. [164]

Very recently, Aeschimann and coworkers have shown that binding of
α-tol facilitates α-TTP oligomierization. [172] They further showed that
aggregation of α-TTP can be enhanced by well-defined conditions like
the presence of negatively charged lipids or higher salt concentrations.
The oligomerisation product they observe are thermodynamically sta-
ble, regular spherical 24-mers of α-TTP (henceforth α-TTPs). They
characterized the spheres using cryo-EM and X-ray diffraction. (PDB:
5MUE and 5MUG). [172] They further showed that oxidative conditions
enhance thermodynamic stability of α-TTPs by formation of twelve
disulfide-bonds that cross-linked different α-TTP units. Their assembly
follows the placement of the monomers at the vertices of a slightly
distorted twice cantellated cube. The edges of the cantellated cube are
precisely located on the axis along which interactions between neigh-
boring proteins are formed. Every α-TTP molecule has 4 different
interacting interfaces that form two different types of contacts with its
neighboring proteins.

The first interface is formed along the tetrameric C4 symmetry axis of
the assembly, and consists of a patch of surface amino acids that are
exposed to the solvent in the native monomeric folding of α-TTP . The
second interface is responsible for the assembly of α-TTP around the
trimeric C3 axis. This interface is located on the surface of the proper
SEC-14-like binding domain. This means that in native α-TTP this sur-
face is buried within the protein. Only unfolding of the first 47 residues
of the N-terminus (first N-terminal α-helix) exposes this interface to
the solvent and makes formation of the trimeric interface possible. The
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Figure 5.1. – Left: (From top to bottom) The trimeric, tetrameric and
dimeric interface that constitute α-TTPS. Right: The single α-TTP proteins
are located on the vertices of a twice cantellated, distorted cube in the assembly
of α-TTPS. Graphic taken from Ref. [172]

orientation of the unfolded residues could not be determined due to
their absence in the x-ray structure. Chromatographic data evidences
that when the monomeric form is the most stable aggregation state for
α-TTP , it is in equilibrium with a small amount of low-weight dimeric
or tetrameric aggregates. If the environmental conditions allow for the
formation of α-TTPs on the other hand, only monomeric α-TTP or
regular α-TTPS are observed, while no other low- or middle-weight
assemblies are detected. [172] The authors show α-TTPS is selectively
and efficiently transported through in vitro models of endothelial bar-
riers, [172] making it a viable candidate for the physiological route of
vitamin E delivery into the brain. [173,174]

Despite these recent discoveries, the mechanism of α-TTP oligomeri-
sation is unprobed and remains unknown and might be crucial for
its transfecting properties. To explain these findings we developed a
model to investigate the self-assembly of α-TTPS based on the X-ray
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Patchy Particle Models

crystallographic and chromatographic data. We chose the number of
proteins included in the simulation should allow for the formation of
multiple aggregates to yield meaningful statistics. Here, the number of
proteins should also not be too high, such that simulation time does not
become excessive. We employ a patchy particle toy model as it allows
for the simulation to be kept as simple as possible, while sufficiently
capturing the dominant effects responsible for the self-assembly process.

A number of studies on the self-assembly of patchy colloids, fictionalized
nanoparticles and biomolecules have shown molecular simulations using
patchy models to be an effective modeling technique. [40,41,175,176] If the
interactions beyond the patches of the toy-particles are highly directional
and anisotropic, protein assembly is especially well captured. [177–182]

5.2. Patchy Particle Models

5.3. Computational Methods

The patchy model for the α-TTP monomers is based on the geometry
and interactions of the biological protein in the X-ray crystallographic
structure of α-TTPS. Thus, the patchy model for the monomer is made
up of one hard sphere on which four interaction sites (IS). The relative
orientation of the IS is chosen according to the geometry of α-TTPS.
The crystallographic structure revealed that only interactions between
ISA and ISB as well as ISC and ISD are formed. [172]
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Figure 5.2. – Coarse Grained model of α-TTPS. Top: (left) In the native α-
TTPS, any monomeric α-TTP (gold spot) is in contact with four other proteins
along the edges of a cantellated cube (top right). Bottom: α-TTP is described
as a sphere with four interaction sites corresponding to the protein-protein
contacts in α-TTPS.

At the start of our investigation, the interaction for the the two IS
pairs were described by the simple potential wells of depth EA/B = u,
EC/D = 3u (u being an arbitrary unit of energy):

EA/B(r) =

{
0 r > rcut

EA/B r ≤ rcut
(5.3.1)

EC/D(r) =

{
0 r > rcut

EC/D r ≤ rcut
(5.3.2)

where r is the IS-IS distance, rcut = 0.2 R is the maximum range of
the interaction.
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The initial 1:3 ratio between EA/B and EC/D was calibrated on an
estimate of the dimerization free-energies from atomistic models using a
standard thermodynamic cycle, [183] computing the solvation free energy
of individual and dimeric structures solving the linearized Poisson-
Boltzmann equation using the APBS software [183], and the binding
energy in vacuo using the Amber force field. [184] Protein dimers were
extrapolated from the x-ray structure of α-TTPS (PDB:5MUE). [172]

The four IS are identified by four vectors with origin in the center of
the hard sphere, and ends in:

ISA = (0, R, 0)

ISB = (−R, 0, 0)

ISC =

(
0,

R√
2
,− R√

2

)
ISD =

(
R√

2
, 0,− R√

2

)
(5.3.3)

where R = 2 nm is the radius of a hard sphere with its center in
O(0, 0, 0).

5.3.1. System Setup

We simulated a system having N = 216 particles at thermal equilibrium.
The protein particles were initiated on a uniform grid in a periodic cubic
simulation box of edge 24.625 R (where R is the radius of the protein),
corresponding to roughly the experimental concentration at which α-
TTP aggregation is observed. [172] The accessible conformational space
in the canonical NVT ensemble was explored using a Metropolis Monte
Carlo (MC) algorithm, described in Section 2.3.1. [185]

For the protein self-assembly we in included 4 different moves: the
rotation or translation of the single particles or whole clusters of bound
particles. [55,186,187] Two particles were considered to belong to same
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cluster if they were connected by a chain of bonds. [188] A bond was
defined if there was non-zero interaction between two particles, i.e.
the distance between the corresponding interaction sites was less than
0.2 R. Rotational moves made use of quaternion representation of
the particle’s orientation, which was modified by a smaller random
orientation and then renormalized. [55,186].

All results here are presented in reduced units: U∗ = U/u and T∗ =
kBT/u for the inner energy and the temperature of the system. We
tested for interactions over a temperatures ranging from T∗=0.014 to
T∗=0.5. For none of the simulations run above T∗=0.3 could any stable
interaction be observed, thus only data in the temperature range 0.001
< T∗ < 0.03 is presented in this thesis.

Simulations were organized in cycles, each cycle consisting of a number
of attempted particle moves. Typical equilibration runs consisted of
6 ×106 - 9 ×106 MC cycles and were followed by a production run of
additional 3 × 105 MC cycles, during which averages of energy and
cluster abundance were calculated. Convergence of the results was
tested by evaluating both the convergence of the expectation value of
the energy, and comparing the variance to the typical short time (1000
steps) energy fluctuations at a given temperature over the last 6× 105

MC cycles.

The acceptance probability for the single particle moves like transla-
tion or rotation was evaluated according to the scheme presented in
Section2.3.1. The cluster moves were implemented following the early
rejection scheme. [55] During production runs, the overall acceptance
ratio was adjusted to be 30% - 40% by a suitable choice of the maximum
displacement and rotation parameters, and these values were never
altered during the run.

Trajectory analysis was performed using the tools available in the VMD
1.9.2 package. [122]
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5.4. The AB-Model

In the AB-Model we investigated the oligomerisation under the con-
dition that only the ISA/B interface is active. This setup mimics the
experimental conditions at which the N-terminal region is folded, and
the ISC/D is not exposed to the solvent. We observe only monomeric
species at high temperatures, while below around T∗ = 0.09, we ob-
served the appearance of low weight aggregates (dimers and tetramers).
At low temperatures, T∗ < 0.07 high weight aggregates in form of
polymeric chains could be observed.

For the lowest temperatures we would, from experiment, expect tetrameric
aggregates rather polymeric chains, with all monomers lying in plane.
In the polymeric chains the interfaces along the ISAB are twisted by
90 degrees out of plane. The same behavior was also reported for the
system with ISCD active as well. A typical polymer chain obtained
from such unconstrained simulations is shown in Figure 5.3.

Figure 5.3. – If no directionality is applied to the ISAB or ISCD, at low
temperatures the protein aggregates into polymeric chains.

The protein interfaces however are chiral and interaction is only possible
in a certain orientation of both proteins and happens over an extended
surface, tightly interlocking.

Since our current model allows for rotation as in a joint an angular
term had to be added to more precisely mimic biological conditions
and properly describe the self-assembly.
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The new interaction potential becomes:

EA/B(r, ψ, φ) =

{
0 r > rcut

EA/B cosψ cosφ r ≤ rcut
(5.4.1)

where cosψ, cosφ, cos θ are defined from the scalar multiplication of
the normalized vectors as in figure Figure 5.4.

Figure 5.4. – Normalized vectors used to define the angular dependency
of the interaction energy. cosψ = v1 · v2, for any A/B or C/D interaction
(green arrows); cosφ = w1 ·w2 for any A/B interaction (top panel, red arrows);
cos θ = n1 · n2, for any C/D interaction (bottom panel, blue arrows)

The angular term was chosen as a cosines function, restricting tightly
the formed interaction geometry while allowing for a broader interaction
radius while ISA and ISB are in proximity. Thus, the number of states
from which interaction of ISA and ISB can be initiated is statistically
increased. Implementation of this angular term shows suppression of
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polymeric chains. More simplified, computationally inexpensive angular
terms were tried, but they partially produced biologically non-relevant
pentamers.

Now, at around T∗ = 0.09, we observed the appearance of low weight
aggregates, mostly tetramers, with a small presence of trimers and
dimers. The relative abundance of α-TTP aggregates with respect to
thermal energy is shown in the top panel of figure Figure 5.6. With
lowering temperature the predominance of the tetramer is increased
over other aggregates, which highlights that the most stable state for
the system when only ISAB is active is indeed the aggregation state of
four α-TTP proteins around the C4 Symmetry axis in α-TTPS.

The resulting tetrameric interface is visualized in Figure Figure 5.5.

Figure 5.5. – The Tetrameric interface in α-TTPS is formed by 4 monomers
interlocked via multiple ISAB, topologically located at the ligand binding site
region of α-TTP.

5.5. The ABCD-Model

In a second set of MC simulations, both the ISA/B, ISC/D interactions
were active. This setup mimics α-TTP with an unfolded N-terminus.
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For the ISC/D the angular term must be modified from the The ISA/B

term, as the The ISC/D sites are oriented toward each other in a 60 degree
angle. Therefore the angle between the normal vectors perpendicular
to the plane had to be restricted more carefully, for the system not to
twist out of plane. The energy is evaluated according to:

EC/D(r, ψ, θ) =

{
0 r > rcut

EC/D cosψ cos 2θ r ≤ rcut
(5.5.1)

with the angles visualized in Figure 5.4.

With all IS active, there are three temperature regimes with distinct
aggregation states (Figure Figure 5.6 (Bottom)). In the high tem-
perature range (T∗ > 0.25), only α-TTP monomers are present. In
the narrow (0.10 < T∗ < 0.25) region, trimeric species (α-TTP3) are
dominant, while for (T∗ < 0.12) high-weight aggregates (α-TTPS)
(Figure Figure 5.6) show the highest relative abundance.
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Figure 5.6. – Relative abundance of α-TTP oligomers (α-TTPn) as a function
of the reduced temperature T∗, when (top panel) only the ISA/B interface is
active, or (bottom panel) when both the ISA/B and ISC/D interfaces are active.

The trimeric phase is populated by monomers, dimers and predomi-
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nantly by trimeric aggregates built by connection of three ISC/D inter-
faces. The trimeric aggregates α-TTP3’s are stable in a region where
the thermodynamic energy of the ISC/D is sufficient to account for the
loss of entropy caused by multimerisation, however the temperatures
is too high to allow for formation of ISA/B contacts. The α-TTP3

interface is formed by the assembly of three α-TTP around the C3

acis of α-TTPS. The resulting trimeric interface is shown in Figure
Figure 5.7.

Figure 5.7. – The Trimeric interface in α-TTPS is formed by 3 monomers
interlocked via multiple ISCD, topologically located at the N-terminal region of
α-TTP. The interaction surface is not exposed to the solvent in folded α-TTP
monomers.

The last phase (T∗ < 0.12) is mostly populated by high-weight oligomers,
up to α-TTPS. For formation of these high weight oligomers both ISA/B

contacts and ISC/D contacts have to be established. Interestingly, by
comparison of both graphs in Figure Figure 5.6 it becomes evident that
oligomerisation to α-TTPS begins at a higher temperature (T∗ = 0.12)
than the one characterizing α-TTP aggregation when only ISA/B are
active (T∗ = 0.07). The shift is not caused by a change in the ISA/B

contacts, rather previous assembly of α-TTPS along the ISC/D contacts
enables the simultaneous, directed formation of two ISA/B contacts
at the same time. The result of this interaction is the formation a
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hexameric structure along the C2 symmetry axis of α-TTPS, which is
geometrically aided by the two ISA/B contacts already being aligned in
the pre-formed α-TTP3.Figure 5.8

Figure 5.8. – Oligomerization of α-TTP3 (Blue triangle). Each oligomerization
step involves the formation of at least two ISA/B contacts. Newly formed
contacts are represented by dashed lines.

Consecutively, more ISA/B contacts are formed as α-TTP6 and higher
order aggregates further oligomerize. In this way the coorperative
effect of creating multiple ISA/B contacts, while forming a single ISA/B

contact is entropically unfavored causes the absence of structures of
intermediate size between α-TTP3 and α-TTPS.
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Figure 5.9. – Inner energy per protein U∗/N, and specific heat c∗V (inset) as a
function of the reduced temperature for the system with both active ISA/B and
ISC/D (continuous line). The dotted line was obtained by simulated annealing
starting from converged data at T∗=0.07. The dashed lines report the same
data for the system with EA/B= 1.5 u.

We further evidence the existence of three distinct phases by analyzing
the transition between each phase. Figure Figure 5.9 shows the energy
per protein versus temperature. The energy profile is described by
two step functions whose transition is thermodynamically damped,
characterized by two separate peaks for the heat capacity with respect
to temperature. Thus, we identify two first-order phase transitions for
the ABCD-model.

The location of these phase transitions is governed by the total energy
of the ISA/B−C/D contacts as well as their relative energy. The total
energy with respect to temperature determines at what temperature
the enthalpy gain from assembly outweighs the loss in entropy. In the
current model, two ISA/B contacts are formed at the same time in a
hexameric interface (Figure 5.8) while exerting the same entropy loss
of creating a single ISA/B contact. This feature allows for the sphere
formation below any temperature at which this interaction becomes
favorable. We propose that, if 2 ∗ EA/B ≤ EC/D one phase transition
and with it the trimeric phase vanishes. To investigate this proposition
we ran an additional simulation with EA/B = 1.5 u = 0.5EC/D. The
result is shown as the dotted line in Figure Figure 5.9. As proposed,
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we only observed one sigmoid in the energy vs temperature plot and
only one peak in the heat capacity graph. The two phases merged into
one. Visual inspection of the final geometries further confirms direct
aggregation from α-TTP monomers to α-TTPS.

5.6. Discussion

Although our data shows the tendency for aggregation from α-TTP
to α-TTPS, we did not observe perfect spheres of α-TTP24 in our
simulations. Rather, in our simulations we could observe the formation
of spherical particles with single point defects. The existence of such
defects is evident from the discrepancy between the average potential
energy reported in Figure Figure 5.9 and the target value of −4u, that
would be reached at T∗ = 0.00 for all monomers forming perfect spheres.
In fact, the average aggregation number observed is 20.2.

We suggested three reasons why no perfect spheres were observed in
our simulations. Firstly, the concentration of free monomers in order
to fill defects at later stages of the simulations was too low. Secondly,
since the self-assembly was not directed more spheres were initiated
by self-assembly than particles were in the simulation to complete the
assembly. Thirdly, at low temperatures we observed kinetically trapped
states. These states are dominant in MC runs at values of T∗u� EA/B,
which yielded poorly aggregated structures, as it is difficult for the
simulation to escape local minima and the self-assembly of the structure
is irregular. The total energy of the system after convergence was also
observed to be higher than those observed for higher temperatures of
the same aggregation phase. Improvement of the structures at T∗ ≤
0.06 was obtained by applying 30 cycles of simulated annealing, between
T∗ = 0.07 and the target temperature. We consequently observed the
formation more regular α-TTPS structures with aggregation number
≈ 23.

This observation is very similar to observations made during crystal
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growth. Large crystals are usually only formed at intermediate solute
concentrations, whereas at very high solute concentrations fast growth
of many small crystals is observed. In order to tackle these three
reasons we started 2 different simulations. Firstly, to tackle the lack
of monomers, we initiated a simulation starting from a converged
structure at T∗ = 0.07. A new layer of monomers (6x6x6 → 7x7x7
particles) was initiated around the previous simulation box and the
cubic simulation box extended to match the experimental density. (box
length 24.625R → 28.73). The new monomers were only allowed to
interact with particles of the previous grid to suppress formation of new
spheres. We chose this setup to simulate constant supply of monomers
during self-assembly in the human body. Results were hardly improved
structures. We did not observe 24-mers again, as mostly lower-weight
aggregates were improved by the new monomers, and matching the last
missing protein in α-TTPS is statistically unlikely. This observation
further evidences the importance of the cooperative effect between
previously formed α-TTP3 when forming the sphere in solution.

Figure 5.10. – (Left) The simulation box at T∗ = 0.07 close to convergence.
Two of the spheres, highlighted with blue circles only possess a single defect
(Right). The number of free monomers at this point of the simulation is
very low, making it statistically improbable to accommodate the defect in the
near-perfect spheres.
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Studies of our experimental colleagues also showed that if the envi-
ronmental conditions were different from the one, where full-sphere
formation was observed, spherical particles with slight defects made
up a majority of the species. This, along with our observations on the
self-assembly might suggest that other co-factors in the human body
aid the self-assembly.

Our data are in optimal agreement with the native gel electrophoresis
experiment reported in ref [172]. Natively folded α-TTP ,where the
ISC/D are inactive, showed the predominance of a monomeric form,
with residual presence of low-weight aggregates (dimer, tetramer, fig-
ure Figure 5.6). After initiation of unfolding of the N-terminus, the
proteins assembled into stable α-TTPS. The spheres showed no ten-
dency to dissemble to lighter oligomers in further incubation tests over
a time-window of 24 hours. [172] These experimental observations on the
biological system correspond to the region of T∗≈ 0.06-0.08 in our toy
system, as can be determined by comparison with Figure Figure 5.11
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Figure 5.11. – Top: Aggregation states of α-TTP at different conditions. (A)
Monomeric dispersion at T∗ = 0.27; (B) aggregation of low-weight oligomers at
T∗ = 0.04, for the system with only active ISA/B; (C) system with all active IS’s
at intermediate T∗ = 0.13, where trimers begin to form; (D) same system at T∗

= 0.07, characterized by formation of α-TTPS. Bottom: phase diagram with
dominating species at different conditions of temperature and folded state. The
region between 0.06 and 0.11 T∗ corresponds to the experimentally observed
behavior, with either properly folded monomers, or assembled α-TTPS.
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T∗≈ 0.06-0.08 is also the region for which we observed the most complete
sphere aggregation and α-TTPS was formed by the coorperative effect
shown in Figure Figure 5.8, while the formation of single ISA/B contacts
was thermodynaomically unstable.We observe mostly monomers for only
ISA/B active, while with ISC/D active as well, we observe aggregation
of α-TTPS. The third phase of stability, dominated by α-TTP3, was
not observed by their initial experiments. We predict that the region
of thermodynamic stability for this phase corresponds to temperature
range of T∗≈ 0.11 - 0.18 in the toy system. At experimental conditions
with an unfolded N-terminus, the system evolves to α-TTPS, showing
no lower weight aggregates, corresponding to a lower temperature of the
toy system. Because proteins are only stable in a narrow temperature
region, the proposed trimeric phase cannot be explored by increasing
the temperature of the real system. However, we predict from our
simulations that the region of thermodynamic stability of the trimeric
phase can be moved by changing the relative interaction strength of
ISA/B and ISC/D, as shown in our data. We propose, that if the
interaction strength of ISA/B is lowered, the trimeric phase is extended
to lower temperatures and α-TTP3 should be observable at experimental
conditions.

Aeschimann and coworkers [172] showed, that mostly hydrophobic con-
tacts at the protein-protein interfaces are responsible for the strength
of the interaction on the C3 and C4 symmetric axis. We predict, that
single point mutations of key residues could weaken the interaction
strength of ISA/B and thus make the trimeric phase most stable at
experimental temperatures. A such mutation would be the F165R
mutation in which the hydrophobic patch is disrupted by a positively
charged arginine residue. Experiments to validate these predictions are
currently planned by our collaborators.
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Figure 5.12. – The most relevant residues responsible for the binding at the
C4 symmetric interface are shown in licorice. The green and purple colors refer
to amino acids belonging to two different α-TTP units.

Our study shows how patchy-particle models can help with under-
standing the self-assembly of protein systems. Also, understanding the
self-assembly process could be relevant to design of drugs that can be
incorporated in the hollow α-TTPS nanosphere. Furthermore, being
able to make predictions on what kind of effects point-mutations will
have on the system is key in order to steer experiments more efficiently.
Our study also sheds light on how the cooperative effect between the
C3 symmetric interface and the ISA/B contacts aids to avoid defects
in the assembly of α-TTPS. Two potential biological benefits of this
effect include, firstly that sphere aggregation can be triggered rapidly
under the right conditions while maintaining the functionality of na-
tive,monomeric species else-wise. Secondly, the cooperative effect might
help aggregation to more ordered and to obtain perfect spheres at a
higher rate.
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6. Conclusion and Future
Outlook

The results of paper I and II showed that the solvent is crucial for the
correct characterization of the different species in and the propagation
of the Schlenk-equilibrium. However, we also determined that the most
abundant species in THF solvent are monomeric Grignard reagents in
line with previous experimental findings. [76] In continuation of this study
we propose the investigation of the Schlenk-Equilibrium of in diethyl
ether, that shows a higher degree of association for the Grignard reagent
and whose equilibrium is suggested to be governed by more complex
higher order aggregates. [76] Enhanced stability of higher order aggregates
might furthermore have implications on the reactivity trends determined
for competing mechanism of the Grignard reaction determined in paper
II. We further suggest additional investigation on the specific influence
of the inductive effect over a variety of substrates on the stability of
the radical pathway of the Grignard reaction.

In regards to our investigation on the self-assembly of the α-tocopherol
transfer protein (α-ttp) experiments to validate our predictions on the
influence of specific protein modifications on the self-aggregation state
of the protein. Our studies shown how the formation of a the trimeric
interface of α-ttps is key to the formation of the protein nanocage.
However, the surface making up the trimeric interface is not exposed
in the native form of α-ttp. Experimentally it was possible to show
that the unfolding of the N-terminus of the protein and exposure of
the trimeric interface is facilitated by presence of negatively charged
lipids or higher salt concentrations. The mechanism of the unfolding
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however remains to be investigated computationally in future work.
Another continuation of the research could involve the experimental
investigation of the conservation of these aggregation properties in other
members of the SEC14-like family, for example CRALBP and SPF.
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7. Appendix

7.1. Appendix A - Metadynamics
parameters for Grignard simulations

Table 7.1. – d0 , p, q parameters for the definition of the coordination number
of THF or CH3 to Mg used as Collective Variables 3.1.2.

d0 p q
THF 2.75 12 24
CH3 3.0 12 24

A quadratic potential wall was used to restrain CV1 in the Schlenk
equilibrium reaction (difference between of the coordination of Methyl
groups to the Mg atoms) to values larger than -0.25, using a force
constant of 0.1 Hartree. This bias was introduced in order to sample
only the Methyl transfer from Mg1 to Mg2, and not vice versa. This
hinders the simulation from having to explore a twice as big accessible
FES, with very limited additional information gain. For the different
metadynamics simulations different sets of time-dependent bias poten-
tials were used for the different sets of surfaces and collective variables,
given in Table S2. The error is estimated according to the formula:

ε̄ =
S2ωT

DτG

(
δs

S

)d
(2π)d/2

k∑ 1

π2k2
e

(
−π2k2

2 ( δsS )
2
)

(7.1.1)

from [120]
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Appendix A - Metadynamics parameters for Grignard simulations

There, δs is the Gaussian with, ω the Gaussian height, τG the Gaus-
sian deposition time, S is the size of the respective CV-space to be
explored, D is the diffusion coefficient and T the temperature and d
the dimensionality of the system.
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P
P
E
N
D
IX

Table 7.2. – Metadynamics parameters and error estimate. The error estimate is calculated according to
equation7.1.1.

System Collective
variable

diffusion
coeffi-
cient
[1/fs]

S Temperature
[K]

Gaussian
height
[kcal/mol]

Gaussian
width

deposition
time [fs]

error
approx-
imate
[kcal/mol]

DClCl THF coor-
dination

2.87E-6 1.25 300 0.35 0.04 12.5 0.54

DClMe THF coor-
dination

1.02E-5 1.25 300 0.5 0.1 12.5 1.36

Schlenk
Equilib-
rium

Difference
in Mg-
CH3

coordina-
tion

5.16E-5 2.5 300 0.25 0.1 12.5 0.30

THF-
coordination
to Mg1

3.01E-5 1.25 300 0.25 0.1 12.5 0.56
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7.2. Appendix B -NBO Analysis for the
Grignard simulations

Table 7.3. – Lone pair delocalization into empty orbitals of Mg for the
monomeric species.

Cl1 Cl2 O1 O2 O3 O4 C1 C2
Mg(CH3)2(THF)2 1.4 1.7 7.9 9.6
MgClCH3(THF)2 5.3 1.8 1.9 10.2
MgCl2(THF)2 5.9 5.9 2 2
MgCl2(THF)3 5.3 5.3 1.9 1.8 1.8
MgCl2(THF)4 4.3 4.0 1.5 1.6 1.6 1.7

Table 7.4. – Lone pair delocalization into empty orbitals of Mg for the DClCl

species.

Cl1 Cl2 O1a O1e O2a O2e C1 C2
DClCl

11 Mg1 4.1 2.2 1.7 1.3 9.4
Mg2 2.3 4 1.5 1.8 9.2

DClCl
12 Mg1 3.3 4.4 1.8 0 0 11.2

Mg2 3.8 2.2 1.5 1.9 9.5
DClCl

22 Mg1 3.8 3.5 1.8 11.7
Mg2 3.9 3.5 1.8 11.5
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Table 7.5. – Lone pair delocalization into empty orbitals of Mg for the DClMe

species.

Cl1 Cl2 O1a O1e O2a O2e C1 C2
DClMe

11cis Mg1 4.1 7.1 2.1 5.6
Mg2 3.8 1.8 3.9 11.1

DClMe
11trans Mg1 4.2 6.7 2.1 5.7

Mg2 3.6 1.9 3.7 11.0
DClMe

12 Mg1 5 6.9 2.0 5.2
Mg2 2 1.9 1.5 3.8 9.5

DClMeTHF
11 Mg1 4.1 6.6 1.9 1.2 4.6

Mg2 3.8 1.6 0.8 3.6 10.2
DClMe

21 (Cl axial) Mg1 3.1 6.3 1.9 1.5 4.7
Mg2 4 1.8 4.0 10.5

DClMe
21 (THF axial) Mg1 3.3 6.3 1.8 1.7 4.3

Mg2 3.9 1.7 4.2 10.4
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7.3. Appendix C - Truncation of pairwise
interactions

Corrections for the cut interactions of truncating pairwise interactions
of the Lennard-Jones (LJ) potential. For the LJ-potential the correction
term for the potential energy and for the truncated, but non-shifted
potential is given by:

Vcorr =
8πN 2

3V
εσ3

[
1

3

(
σ

rc

)−9

−
(
σ

rc

)−3
]

(7.3.1)

The correction to the potential energy for the truncated and shifted
potential is:

Vcorr =
2πN 2

3V
r3
cV (rc) +

2πN 2

V

∫ ∞
rc

r2V (r)dr (7.3.2)

The correction to the pressure for the truncated and shifted as well as
non-shifted potential is:

Vcorr =
16πN 2

3V 2
εσ3

[
2

3

(
σ

rc

)−9

−
(
σ

rc

)−3
]

(7.3.3)
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7.4. Appendix D - Molecular Mechanics
potentials

The major difference between AIMD and Molecular Mechanics (MM)
arises from the basis on which the forces are evaluated. In AIMD these
stem from the potential energy surface according to the solutions of
the time-independent Schroedinger equation. The MM the motion is
determined by evaluating Newton’s EOMs. Moving from quantum to
classical mechanics these two expressions are the respective equivalents
of each other. The forces in Newton’s equation of motion are obtained
from the derivative of the potential energy function.

The potential energy function, VMM used in MM is shown below. We
will in turn look at the different interactions that make up the potential
energy equation

VMM =
∑
b

kb(r − r0)
2 +

∑
σ

kσ(σ − σ0)
2 +

∑
phi

kφ[1 + cos(nφ− δ)]

+ 4
∑
i∈A

∑
i∈B

ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
1

4πε0

∑
i∈A

∑
i∈B

qiqj
rij

(7.4.1)

Firstly, the intramolecular interactions are the forces between neigh-
boring atoms in the same molecule. They major contributions arise
from bond stretching, bond angle bending and bond torsions. Bond
stretching is accurately described using the Morse Potential:

V (r) = De

[
1− e−kb(r−r0)

]2

(7.4.2)

where r is the length of the bond, kb a constant, r0 the equilibrium
bond length, and De the well depth minimum. This term requires
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three parameters per bond and is somewhat expensive to compute due
to the exponential term. Because the energy of bond stretching is
relatively high most bonds only deviate slightly from their equilibrium
geometry. We can therefore use a second-order Taylor expansion around
the equilibrium bond length to describe bond stretching.

V (r) = kb(r − r0)
2 (7.4.3)

The bond angle bending is similarly described by a second-order Taylor
expansion of the angle σ around the equilibrium bond angle σ0:

V (σ) = kσ(σ − σ0)
2 (7.4.4)

The deviation from the equilibrium geometry for bond torsion are
energetically much more easily accessible and are well approximated
using a cosine expansion:

V (φ) =
N∑
n=0

cncos(φ)n (7.4.5)

with φ the torsional angle, summed over N terms with coefficient kn. In
practice for faster convergence, the following mathematically equivalent
expression is used:

V (φ) =
N∑
n=0

cn[1 + cos(nφ)− δ] (7.4.6)

Secondly, the intermolecular interactions stem from the interactions
of all atoms in the simulation with each other. Even though the
intermolecular forces are dependent on different multi-body interactions
the expression, its potential energy expression is in simulation truncated
at the second order and the neglected interactions are incorporated
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using parameterization of the one- and two-body interactions. The
reason for this approximation is that the scaling of the method is
determined by the treatment of the intermolecular forces. Including
those interactions to the third or forth order results in N 3 or N 4 scaling
of the method, making is much less applicable to larger systems.

The pair-wise interactions can be dissected into electrostatic inter-
actions, van-der-Waals attractions and excluded volume repulsions.
The potential energy term for the electrostatic interactions follows
Coulomb’s law,

Vcoulomb =
1

4πε0

qiqj
rij

(7.4.7)

where qi and qj are the partial charged of atoms i and j, rij is the
interatomic distance and ε0 is the free space permittivity. The van der
Waals attractions and Excluded Volume repulsions can be combined into
a single expression. The resulting expression is the potential proposed
by Lennard-Jones: [189]

VLJ = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(7.4.8)

where ε and σ are constant dependent on the types of atoms i and j.
In summation the three intramolecular and two intermolecular terms
describe the potential energy, summarized in Equation 7.4.1.

The N 2 scaling of MM, determined by the intermolecular interactions,
can be further reduced with the use of cutoff radii, periodic pair-
list updates and the particle mesh Ewald (PME) method. These
methods will be further examined in the Methods section. Classical
MD works well under the pretense that the BO approximation is valid,
the electronic structure is not of interest, there is no bond breaking or
forming and the electrons are highly localized.
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ABSTRACT 
The Schlenk equilibrium is a complex reaction governing the presence of multiple chemical 

species in solution of Grignard reagents. The full characterization at the molecular level of the 

transformation of CH3MgCl into MgCl2 and Mg(CH3)2 in tetrahydrofuran (THF) by means of 

ab initio molecular dynamics simulations with enhanced-sampling metadynamics is 

presented. The reaction occurs via formation of dinuclear species bridged by chlorine atoms. 

At room temperature, the different chemical species involved in the reaction accept multiple 

solvation structures, with two to four THF molecules that can coordinate the Mg atoms. The 

energy difference between all dinuclear solvated structures is lower than 5 kcal mol-1. The 

solvent is shown to be a direct key player driving the Schlenk mechanism. In particular, this 

study illustrates how the most stable symmetrically solvated dinuclear species, 

(THF)CH3Mg(µ-Cl)2MgCH3(THF) and (THF)CH3Mg(µ-Cl)(µ-CH3)MgCl(THF), need to 

evolve to less stable asymmetrically solvated species, (THF)CH3Mg(µ-Cl)2MgCH3(THF)2 

and (THF)CH3Mg(µ-Cl)(µ-CH3)MgCl(THF)2, in order to yield ligand exchange or product 

dissociation. In addition the transferred ligands are always departing from an axial position of 

a penta-coordinated Mg atom. Thus, the solvent dynamic is key to successive Mg-Cl and Mg-

CH3 bond cleavages since cleavage of bond occurs at the most solvated Mg and formation of 

bonds at the least solvated one. The dynamics of solvent also contributes to keep relatively 

flat the free energy profile of the Schlenk equilibrium. These results shed light to one of the 

most used organometallic reagents whose structures in solvent remains experimentally 

unresolved. These results may also help to developing more efficient catalyst for reactions 

involving these species.  
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INTRODUCTION 

In 1900, the presentation by Victor Grignard of a new compound, completely soluble in ether 

and formed upon reaction of magnesium with alkyl halides,1 paved the way to the 

establishment of one of the most widely used organometallic reagents in organic synthesis, 

worth the Noble prize in 1912.2 The so-called Grignard reagent, with nominal formula 

RMgX, is used in nucleophilic addition or substitution reactions, taking advantage of the 

enriched electron density in the R group coordinated to the Mg atom.  

Initial limitations to the direct use of this reagent were found due to its relatively modest 

tolerance to different functional groups compared to that of corresponding boron and zinc 

metals. However, the use of Ni catalysts on coupling reactions using the Grignard reagent, 

independently developed by Corriu and Massé, and Kumada and Tamao, increased the 

relevance of this reagent. 3-4 Nowadays, the interest in the functionalization of phenol-based 

derivatives involving earth abundant metal catalysts and the development of efficient 

synthetic protocols allowing to work at very mild condition and with large functional 

tolerance make organomagnesium reagents very attractive.5-11,12 

Despite the use of Grignard reagents in organic synthesis, their molecular structure in solution 

has remained elusive so far, even if considerable research effort has been spent on this topic. 

In an illuminating essay, Seyferth described the difficulties in characterizing the structures of 

Grignard reagents, which can be affected by both the solvent, and the halide and organic 

groups bonded to Mg.13 Solid state structures determined by X-ray diffraction studies 

revealed a diversity of coordination modes for Mg and nuclearity of the molecular system. A 

tetrahedral coordination is commonly observed in crystals structures obtained from ether 

solutions as EtMgBr(OEt2)2,14 where two molecules of solvent are bound to Mg. Instead, both 

trigonal bipyramidal and square pyramidal structures were found for CH3MgBrTHF3 when 

working in THF solvent.15 X-ray data of aggregates of two EtMg2Cl3 moieties showed a 
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greater than four coordination for the Mg centers.16,17 Due to the lattice packing restrictions, 

the structures of Grignard reagents observed in the crystalline solid state may not be 

necessarily representative of the stable species present in solution. Investigations using 

molecular weight,18 calorimetric measurements,19 and NMR and IR spectroscopy20 support in 

fact the existence of structures other than those detected by X-ray crystallography. 

The determination of the structures of Grignard reagents in solution is particularly complex 

because of the presence of multiple chemical species at thermodynamic equilibrium. This 

complication has been evident since 1929, when Schlenk father and son21 proposed that 

redistribution of ligands yielding MgR2 and MgX2 from RMgX could take place (original 

Schlenk equilibrium in Scheme 1). At present, it is commonly recognized that the halide 

atoms in RMgX and MgX2 tend to form bridges between magnesium atoms to yield dimers 

and oligomeric structures, which are in equilibrium with monomeric species (generalized 

Schlenk equilibrium in Scheme 1). This causes the association between the various moieties, 

eventually favoring ligand exchange. The degree of association among the Mg centers is 

dependent on the solvent, as shown by Ashby and Walker, who found a degree of association 

around ~1 in THF and between 1 and 4, depending on the nature of R and X, in diethyl 

ether.22 Further studies suggested that some complex equilibrium between RMgCl(THF)n, 

MgR2(µ-Cl)2Mg(THF)5/4 and RMg2(µ-Cl)3(THF)5 better describes the traditional Schlenk 

equilibrium.23-24 

Given the complexity of the problem, computational modeling offers an excellent tool to 

determine in detail the chemical nature of the species involved in the Schlenk equilibrium. In 

the past, examination of the Cambridge Crystallographic Data base and Density Functional 

Theory (DFT)25-26,27 calculations for isolated molecules led to establish the overwhelming 

prevalence of structures with two over three bridging ligands, and a preference for halide over 

alkyl ligands in that position. Moreover, they observed that the maximum stabilizing effect of 
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the coordinating solvent is obtained for dimeric moieties.28 Including the solvent as a 

continuum model in a systematic way and combining Generalized Valence Bond, second 

order Møller-Plesset perturbation theory (MP2) and DFT calculations indicated that radical 

and charged species may be present at the equilibrium, although in small concentrations.29 

Explicit solvent was limited to the first coordination sphere of the Mg atom and in many cases 

the total number of ligands at Mg including the solvent was fixed to four. However, both 

crystallographic30-32 and computational studies33 showed that Mg could expand its 

coordination sphere over more than four ligands, up to hexacoordination. This limitation is 

probably even more inappropriate when trying to understand the dynamic processes involved 

in the Schlenk equilibrium (Scheme 1).  

 

	

Scheme 1: Schlenk equilibria. 

 

In consideration of the longstanding and recently renewed importance of Grignard in organic 

synthesis,34-36 it is important to reach a better understanding of its structure and dynamic 

behavior in solvent. In this respect, dynamic modeling approaches may constitute the optimal 

choice for an accurate description of the Grignard reagent. In the past decades, ab initio 

molecular dynamics simulations (AIMD) have been shown to be especially appropriate to 

study processes in the liquid phase.37-38 For example, this technique was used to study 

2 RMgX R2Mg + MgX2

 Original Schlenk equilibrium

Generalized Schlenk equilibrium

Oligomers

MgX2(RMgX)2 R2Mg
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structural properties of various metal ions in solution, including Na,39 Mg40-41, or Co and 

Ag.42 In addition, AIMD with enhanced sampling methods by means of metadynamics were 

effectively used to provide an accurate description of solvent effects in various organic43-44 

and organometallic reactions.45-46 Larger metallo-organic systems have been treated coupling 

AIMD to molecular mechanics schemes.47 This approach was used to describe for example 

electronic solute-solvent coupling in photo-excitation dynamics of ruthenium metallorganic 

compounds,48 the reaction mechanisms of hydrolysis in zinc β-lactamases49-50, the redox 

properties of copper in azurin,51 the functional role of Mg2+ ions in ribonuclease H52 and the 

design of organo-ruthenium anticancer complexes.53  

In this work, this methodology was used to investigate the equilibria that take place when 

CH3MgCl, a model of Grignard reagent, is dissolved in tetrahydrofuran (THF). Our study was 

also complemented by DFT static calculations of selected structures identified as minima by 

the ab initio molecular dynamics. The data presented in this work show that multiple 

structures with different solvation patterns are in equilibrium, and evidence how the dynamic 

exchange of solvent molecules in the Mg coordination sphere is key to the evolution from the 

reactant to product in the Schlenk equilibrium. 

 

COMPUTATIONAL METHODS 

System Setup  The Schlenk equilibrium was investigated through a set of simulations 

describing monomeric reactants, monomeric products, and different intermediate dimeric 

states. 

 Monomeric species We built three different systems, containing each, one molecule 

of either CH3 MgCl, MgCl2 or Mg(CH3 )2 surrounded by 25 molecules of THF in a periodic 

box of dimensions 15.0 x 15.0 x 15.0 Å3 . The initial coordinates of THF were obtained from 

a previous 20 ps-long equilibration run in a similar box containing the pure solvent. The 

number of solvent molecules was set to be consistent with the experimental density of THF at 

room temperature. 54 All systems were first relaxed for 15 ps in the microcanonical ensemble 
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at energies matching an average temperature of 300 K. Relaxation at the target temperature 

was performed using canonical sampling/velocity rescaling (CSVR) thermostat with a time 

constant of 10 fs until the temperature of the system oscillated around the target value. 

Production runs were simulated in the NVT ensemble at 300 K.  The Nosé -Hoover chain 

thermostat with a chain length of 3 and time constant 1 ps was used for data production.55-57
 

 Dimeric species The (MgCH3Cl)2  species were simulated in an orthorhombic 

periodic box of dimensions 25.2 x 15.0 x 15.0 Å3 , containing 42 THF molecules. A larger 

box of dimensions 25.2 x 20.0 x 20.0 Å 3 with 74 THF molecules was also simulated to verify 

that there is no significant bias due to finite-size effects (see Supporting Information). The 

systems were thermalized following the same protocol as described for the monomers. 

 

 Figure 1. Simulation box used in this study. The atoms of Grignard reagent are represented by 

spheres and the THF solvent molecules by sticks in licorice and red. Hydrogen atoms of THF are not 

shown for clarity.  
 

Ab- initio Molecular Dynamics simulations  The electronic problem was solved by 

DFT25-26 using the Perdew-Burke-Ernzerhof approximation to the exchange correlation 

functional.58 Kohn-Sham orbitals were expanded over mixed Gaussian and plane-wave basis 

functions.59 The DZVP basis set for first and second row elements and Mg, and a 

molecularly optimized basis set for the chlorine atoms were employed.60 The auxiliary plane 

wave basis set was expanded to a 200 Ry cutoff. The core electrons were integrated out 
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using pseudopotentials of the Goedecker-Teter-Hutter type.61 Dispersion forces were 

accounted for using the D3 Grimme approximation.62
 AIMD simulations were run over the 

Born-Oppenheimer surface, with a time-step of 0.25 fs, optimizing the energy gradient to a 

threshold of 10-5  au. 

 

Free-energy calculations   The exploration of the conformational and reactive landscape, 

and determination of the corresponding free-energy surface, was performed by coupling 

AIMD to metadynamics simulations.37, 63
 The solvation of different chemical species 

observed during the AIMD runs, as well as the transmetallation reaction, were investigated 

by independent metadynamics runs. All collective variables (CVs) employed in this study 

were defined as the coordination-number of specific ligand species to individual Mg 

atoms. The coordination number of a species X around Mg at a given time t (CN[X](t)) 

was evaluated according to the formula shown in equation 1, as defined in previous works: 
38 

𝐶𝑁 𝑋 𝑡 =
!!

!! !
!!

!

!!
!! !
!!

!
!!
!                                                         (1) 

 

Where NX   is the number of species X present in the system, di is the distance of the ith atom 

X from Mg, and d0, p and q are free parameters (see Supporting Information). 

The time-dependent bias potential was formed by sets of Gaussians of 0.25 kcal mol-1  height 

and 0.04 width for coordination variables and added every 50 steps of AIMD for the di-

chloride bridged system. Additional details of the Metadynamics parameters used as well as 

the associated errors is given in the Table S1 of the Supporting Information.  

The metadynamics simulations convergence was confirmed by checking that the calculations 

reached the diffusion limit within their wall constraints; statistical errors, computed according 

to references64-65, are within 1-3 kT (see Supporting Information).  

AIMD runs were computed using the QUICKSTEP6 6 , 67 module of the CP2K 2.5.1 

package. Trajectory analysis was performed using the tools available in the VMD 1.9.2 

package. 68 

 

Static calculations and electronic structure analysis Chemically relevant geometries 

sampled by AIMD were fully optimized at the DFT(PBE+GD3) level by using the 

Gaussian09 software package.69 Mg, C, H and O were described with the all-electron double-
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ζ 6-31+G** basis set.70-72 Vibrational frequencies were computed analytically to verify that 

the stationary points found were energy minima. In addition to the solvent molecules bound 

to Mg, implicit solvation was modeled by using the SMD solvation model.73 In selected 

cases, Gibbs energies were obtained for T = 298.15 K and p = 1 atm. In the bimolecular 

steps, these energies were corrected for the 1M standard state (T = 298.15 K and p = 24.465 

atm). Donor-acceptor interactions were explored by means of natural bond orbital 

calculations (NBO6 version).74 The nature of these interactions was determined by 

computing the associated natural localized molecular orbitals (NLMO).	75	

	

RESULTS	
We restricted our investigation to monomers and di-nuclear species, excluding higher 

aggregation states, because experimental studies showed that in THF the aggregation is very 

low, mainly consisting of monomeric species.22 

Monomeric structures The solvation of CH3MgCl, Mg(CH3)2 and MgCl2 species were 

investigated over 40 ps of AIMD simulations at 300 K. CH3MgCl and Mg(CH3)2 were only 

found with two THF molecules in the solvation sphere of Mg  and a tetrahedral coordination 

at this atom (Figure 2). On the contrary, both tetrameric- and pentameric coordination were 

found for MgCl2. The nature of the solvation of MgCl2 was then further investigated by 

metadynamics simulations, using the coordination number of oxygen atoms of THF to Mg as 

the collective variable (CV). These simulations showed that the most likely solvation state is 

MgCl2(THF)3 arranged in a trigonal-bipyramidal coordination at Mg. MgCl2(THF)3 is ~1.6 

kcal mol-1 and ~2.8 kcal mol-1 more stable than the tetrahedral or octahedral complexes with 

two and four coordinating THF molecules, respectively. Thus, at room temperature the 

different solvation states are in equilibrium in solution in a 0.07:1.0:0.01 ratio for the di-, tri- 

and tetra-solvated complexes, yielding an average MgCl2(THF)x solvation  with value x= 2.9.  

DFT optimization of the structures located as minima on the free energy surface (FES) 

showed that they are also minima on the potential energy surface (PES) with similar structural 

features (these structures are shown in Figure 2). Natural bond orbital analysis (NBO) on 

these optimized structures showed a higher electron donation of CH3 to Mg compared to Cl. 

This is shown by the Mg contribution on the lone pairs NLMOs of CH3 and Cl (χMg), which 

are 10.2% and 5.3%, respectively, in CH3MgCl (see Figure S1 and Table S1 for further 

details). This may explain the need of additional coordinating THF in MgCl2 to improve the 

screening of the Mg charge.	
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Figure 2. Most likely solvation structures for MgCl2 (left), Mg(CH3)2 (middle) and (CH3)MgCl 

(right). The dotted black lines represent the coordination of the ligands to the Mg center. 

 
Dinuclear structures The formation of dinuclear species was first studied by performing an 

AIMD simulation at 300 K starting from two molecules of CH3MgCl placed with their 

respective Mg atoms at a distance of 9.5 Å. In order to accelerate the dimerization, a bias 

restraining potential to induce the approach of the two molecules was used (see 

Computational Methods Section). A dimeric structure with two bridging chlorine atoms was 

formed as soon as the two Mg atoms were at a distance of 5.5 Å.  

 

Cl/CH3 exchange process Chloride/methyl exchange between the two Mg centers was 

investigated combining AIMD and metadynamics simulations, using as CVs the THF 

solvation number on one arbitrary Mg (CV1) and the difference in methyl coordination 

between the two Mg atoms (CV2). The CVs where chosen to monitor the free energy change 

upon methyl transfer between the Mg atoms as a function of the local solvation of Mg. 

The resulting FES (Figure 3) shows five separated wells (A, B, C, D and E) that can be 

classified according to the nature of the Mg bridging groups. The most representative 

structures captured in each well are shown in Figure 3. Wells A and B correspond to 

dichloride-bridged dinuclear species, C and D correspond to the mixed Me and Cl bridged 

species, and E encloses monochloride bridged structures of formula ClMg(µ-Cl)MgMe2. 

While wells A and B are representing the structures of the reactants, well E represents the 

pre-product state prior to final dissociation into MgCl2 and Mg(CH3)2.  

We introduce a notation for describing the nature of the dimer D. The notation Dij
XY stands 

for dimer (D) where i and j are the numbers of THF on Mg1 and Mg2, respectively and X and 
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Y describe the nature of the bridging ligands. DXY describes the entire family of X, and Y 

bridging species regardless of the number of THF on either Mg. The FES plot in Figure 3 

shows that the ensemble of DClCl structures is more stable by ~ 3.5 kcal mol-1 than the one for 

DClMe. In addition, the FES shows a clear path connecting the A - E wells, thus giving 

information on the ligand exchange reaction. The transformation from wells A-B to D goes 

preferentially via well C, while exchange connecting directly B to D does not constitute a 

similarly viable path. The energy barriers for the A-C and C-D transition are ~8 kcal mol-1 

and ~6 kcal mol-1, respectively, while the free energy barrier between B and D is 13 kcal mol-

1 higher than well A. The preference for this path was analyzed by studying more closely the 

solvation structures of DClCl and DClMe. 

 

 Figure 3. Free-energy surface of the Schlenk-Equilibrium. The collective variables for this 

representation are the difference in Mg-CH3 coordination number between Mg2 and Mg1 (CV1) and 

the THF-coordination number to Mg1 (CV2). The chemical structures drawn in the figure depict the 

most representative species obtained for wells A, B, C, D and E.  
 

Solvation of dichloro-bridged structures  The accessible solvation states of DClCl in the A 

and B wells (Figure 3) were investigated by metadynamics simulations using the coordination 

number of the oxygen atoms of THF to each of the Mg atoms as CVs. The simulations 

revealed the existence of three solvation states, corresponding to distinct free-energy minima 

reported in Figure 4. The solvation state with the lowest free energy corresponds to a 
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symmetric dimeric structure in which each Mg atom is solvated by a single THF (DClCl
11). 

The second most stable solvation state, only 1.3 kcal mol-1 higher in energy, corresponds to 

another symmetric adduct with two THF molecules coordinating each Mg (DClCl
22). In the 

later, each Mg is five coordinated. The interconversion between these two structures occurs 

through a metastable asymmetric solvation state DClCl
12 with one THF solvent on one Mg and 

two on the other. This asymmetric solvation state DClCl
12, which is 2.7 kcal mol-1 higher in 

energy than DClCl
11, is expected to be statistically present in 1% of room-temperature samples, 

also taking into account degenerate states. Higher solvation states with three THF in the first 

solvation shell of a single Mg-center are more than 5 kcal mol-1 higher in energy than DClCl
11, 

and therefore are expected to be present only in minor amounts in room-temperature samples. 

Both the relative stability and activation energies for the interchange between DClCl
11, DClCl

12 

and DClCl
22 are low (less than 5 kcal mol-1), implying fast interconversion between the 

different structures at room temperature. 

 
  

Figure 4.  Solvated DClCl structures found by metadynamics simulations (left) and corresponding FES 

(right). CV1 and CV2 are defined as the coordination numbers of THF at Mg1 and Mg2, respectively, 

following equation 1.  

 

Analysis of the structural changes from DClCl
11 to DClCl

12 showed that the addition of THF to 

Mg2 (Figure 4) occurs always anti to one of the chloride atoms, producing a local trigonal-

bipyramidal coordination with the bridging Cl’s in axial and equatorial positions. AIMD 
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simulations indicated significant lengthening of the Mg-Clax bond relative to the Mg-Cleq one. 

Reversible cleavage of the axial Cl-Mg bond, and consequent formation of transient single 

chloride-bridged structures were observed during the analysis of AIMD trajectories. In order 

to analyze the influence of the solvent on the Mg-Cl cleavage, the statistical distribution of the 

Mg-Cl bond lengths in DClCl
11, DClCl

12 and DClCl
22 was computed (Figure 5). As expected, an 

increase in solvation is associated with a statistical elongation of the Mg-Cl bonds.   

 

 

 
Figure 5. (a) Mg-Cl distance distributions in DClCl dimeric structures. (b) Mg1-Cl (blue) and Mg2-Cl 

(red) distance distributions in DClCl
12. Mg-Cl bond cleavage is observed when the Mg-Cl distance is 

larger than 3.7 Å.  

 

Strikingly, Mg-Cl bond cleavage was observed only in the asymmetric DClCl
12 structure with 

statistically significant probability of finding Mg-Cl distances with longer values than 3.7 Å, 

as shown in the inset of Figure 5a. On the contrary, both the Mg-Cl bond length distributions 

of the least and the most solvated DClCl
11 and DClCl

22 species vanish above 3.7 Å, indicating 

statistical irrelevance of Mg-Cl bond cleaved structures. Analysis of the AIMD trajectory 

evidenced that in all cases the cleavage of the Mg-Cl bond occurs between the penta-

coordinated Mg2 and the Clax bridged atom in axial position in the trigonal bipypramid, as 

shown in Figure 5b. The presence in thermal samples of the monochlorine bridged, 

unsymmetrically solvated structures appear to be an essential ingredient in the ligand 

exchange at each Mg.  
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The activation of the Mg-Cl bond in axial position is also consistent with the NBO analysis of 

DClCl, which shows that the pentacoordinated Mg atoms in both DClCl
12 and DClCl

22 receive the 

smallest electron donation from Cl (χMg ~ 6%). In particular, the bridging chloride, axially 

coordinated to Mg2, Clax, has the lowest contribution to this magnesium (χMg ~ 2%). Such a 

small donation implies an overpolarization of the Clax-Mg2 bond, which in turn facilitates the 

opening of the di-chloride-bridged moiety of DClCl
12 as observed during AIMD. The 

asymmetry in the donation between the axial and the equatorial Cl explains also the selective 

opening of the ring at the Clax-Mg2 bond. 

The trigonal-bipyramidal geometry on Mg2 in DClCl
12 was not found in DClCl

22. Instead, the 

coordination geometry of Mg atoms took a distorted square pyramidal geometry, with an 

apical THF, and equatorial Cl atoms, methyl group and remaining THF. In all DClCl
11, DClCl

12 

and DClCl
22 the equilibrium values for the Cl-Mg-Cl bond angle are close to 90° (Table 1), 

even though the coordination geometries of the Mg atoms in the structures are different from 

each other. As an additional structural feature, it is observed that, during AIMD simulations, 

the four atoms of the Mg(µ-Cl)2Mg moiety do not lie in the same plane. The average angles 

between the two MgCl2 planes are reported in Table 1.   

 

Table 1. Average angles (αdyn, β1
dyn and β2

dyn, in degrees) with associated standard deviation (in 

parenthesis) obtained from cluster analysis of the metadynamics trajectory, and angles from DFT 

optimization with implicit solvent (αst, β1
st and β2

st, in degrees).  

 αdyn α st β1
dyn β1

st β2
dyn β2

st 

DClCl
11 167(8) 169.7 89(5) 91.3 89(5) 91.6 

DClCl
12 166(9) 165.4 91(7) 92.1 82(6) 83.9 

DClCl
22 165(11) 160.6 94(6) 84.1 94(6) 84.2 
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DFT optimization of DClCl
11, DClCl

12 and DClCl
22 confirmed that the minima on the FES 

correspond to minima on the PES. However, structural discrepancies are obtained for the 

species with the largest number of THF in the coordination sphere of the Mg centers. Thus, 

the Mg centers in DClCl
22 are trigonal-bipyramidal on the PES, while they are distorted square 

pyramidal on the FES. This indicates that the solvent cage has an increasing influence on the 

structure and dynamics of the more flexible, solvated species. AIMD simulations also 

revealed the existence of interchange of THF molecules in the Mg solvation shell of DClCl
22 

taking place through an associative mechanism. In this case, a short-lived octahedral structure 

was formed. The statistical abundance of these structures is however marginal.  

 

Solvation of methyl chloride bridged structures 

The accessible solvation states of the DClMe species in C and D wells (Figure 3) were 

analyzed by metadynamics simulations using the coordination number of the oxygen atoms of 

THF to each of the Mg atoms as CVs (Figure 6). Three low-energy solvation structures were 

obtained. The lowest in energy, DClMe
11, has two tetrahedral-coordinated Mg centers bridged 

by a Cl-atom and a methyl group. This structure is favored over the other ones by about 3 kcal 

mol-1. The two other major structures are dinuclear species with three coordinated solvent 

molecules, DClMe
21 and DClMeTHF

11. In the former species, the additional THF is bound to the 

Mg-Cl moiety, while in the latter THF is bridging the two Mg centers (Figure 6). The free 

energies of triply-bridged species DClMeTHF
11 and the asymmetrically solvated DClMe

21 differ 

by only 0.5 kcal mol-1 separated by a barrier of the order of 2 kT. A well corresponding to the 

asymmetric structure with two THF molecules coordinated to the Mg-CH3 moiety (DClMe
12) 

was also obtained about 5 kcal mol-1 above DClMe
11. Overall, fast interchange between 

DClMe
21, DClMeTHF

11 and DClMe
12 is observed with low activation energy barriers of around 4 

kcal mol-1. 
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Figure 6. FES for the methyl-bridged dimer DClMe equilibria using the THF-coordination number to 

Mg1 (CV1) and the THF-coordination number to Mg2 (CV2) as variables, together with the most 

representative species obtained for wells a, b, c and d. 

 

All DClMe structures show tetrahedral and trigonal-bipyramidal geometries for the Mg-centers 

solvated by one and two THF, respectively. The bridging methyl (µ-CH3) interacts differently 

with the two Mg atoms in the ClMg(µ-CH3)(µ-Cl)MgCH3 dimer. This is due the asymmetric 

distribution of the ligands at the two Mg atoms since Mg1 has a terminal chloride while Mg2 

has a terminal methyl group. Moreover, the two Mg can have different solvation states at 

room temperature, as shown by the FES in Figure 6. In order to quantify the way the bridging 

CH3 group interacts with the two Mg centers in the different structures, the direction of the 

bridging pz orbital axis relative to the two C-Mg directions was monitored (Figure 7).  



	 17	

 
Figure 7. Orientation of the methyl group in DClMe as a function of the solvation state, represented by 

ϕ1 and ϕ2. A larger ϕ  angle is indicative of a stronger Mg-CH3 interaction. 

 

In both DClMe
11 and DClMe

12, the pz orbital is oriented toward Mg1-Cl moiety, with average 

angles ϕ1 of approximately 141° and 149°, respectively. In these two structures ϕ2 has an 

average value of 127° and 128° indicating a poorer interaction of the bridging methyl with 

Mg2 pz orbital. In DClMeTHF
11 the µ-CH3 bridging group is more equally shared between the 

two Mg centers as indicated by the values of ϕ1 and ϕ2 that oscillate around 145° and 136°, 

respectively. A larger solvation for the Mg bound to the terminal Cl than the other Mg atom 

(DClMe
21) results in a practically equal sharing of the bridging methyl between the two Mg 

centers. In this case, both angles ϕ1 and ϕ2 oscillate around an average value of ~ 137°.  
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Table 2: Average angles (αdyn, β1
dyn and β2

dyn, in degrees) with its standard deviation (in parenthesis) 

obtained from cluster analysis of the metadynamics trajectory, and optimized angles from DFT 

calculations with implicit solvent (αst, β1
st and β2

st, in degrees).  

 αdyn α st β1
dyn β1

st β2
dyn β2

st 

DClMe
11 167(11) 175.6 101(10) 103.7 94(7) 100.0 

DClMe
12 166(8) 179.4 102(7) 110.6 89(7) 93.2 

DClMeTHF
11 165(6) 154.4 103(7) 102.0 96(7) 99.6 

DClMe
21 161(7) 172.3 94(7) 100.4 101(7) 102.5 

 

The orientation of the bridging methyl group is thus highly sensitive to the chemical groups 

and the solvation at each Mg center. For equal solvation, the methyl interacts more with the 

more electron deficient Mg1 center, i.e., the one with the terminal chloride. Increasing 

solvation of Mg1 by either bridging or terminal THF results in an increase interaction of the 

bridging methyl group with Mg2 bearing the terminal methyl group. In this way, the solvent 

helps the bridging methyl group to weaken its interaction with Mg1 and increase that to Mg2, 

assisting the transformation of CH3MgCl into MgCl2 and Mg(CH3)2.  

Geometry optimizations on the potential energy surface with DFT methods of the minima 

DClMe
11, DClMe

12, DClMeTHF
11 and DClMe

21 on the FES gave minima with similar structures as 

indicated in Table 2. In all cases, trigonal-bipyramid geometries were found on the penta-

coordinated Mg atoms with the bridging CH3 and a terminal THF in the axial positions. NBO 

analysis on the optimized structures showed a slightly higher electron donation of the bridged 

CH3 lone pair to the Mg of the Mg-Cl moiety (χMg1 = 5.7, 5.2 and 4.6 %) compared to the one 

of the Mg-CH3 moiety (χMg2 = 3.7, 3.8 and 3.6 %) for DClMe
11, DClMe

12 and DClMeTHF
11, 

respectively. With increasing solvation of Mg1, as in DClMe
21

, the donation of the bridging 

methyl group to the two Mg centers becomes equivalent (χMg1 = 4.3 %, χMg2 = 4.2 %), 

consistent with the distribution of the ϕ1 and ϕ2 angles during AIMD simulations (Figure 8). 
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Although small, the increased electron donation of the Me group to Mg2, which already bears 

the other methyl group, is in agreement with DClMe
21 being the most prone of the methyl-

chloride bridged dimers to yield the final products MgCl2 and MgCH3)2. 

 

The reaction pathway of the Schlenk equilibrium  
The computational results presented above allow the reconstruction of the full reaction 

pathway of the Schlenk equilibrium in a THF solution. Figure 8 presents the set of structures, 

localized as minima on the FES, that are involved in the transformation of the reactants 

CH3MgCl(THF)2 to the products Mg(CH3)2(THF)2 and MgCl2(THF)n  (n = 2 - 4). The scheme 

also highlights the key role played by the solvent in assisting the Cl/CH3 ligand exchange.  

The Schlenk equilibrium starts by a dimerization of (CH3)MgCl(THF)2 via the two chloride 

atoms to form the dichloride bridged species DClCl
22. Static calculations show that this 

reaction is slightly endoergic by 4.9 kcal mol-1, consistent with experimental results.22, 76  

The coordination geometry of the pentacoordinated Mg atoms in DClCl
22 was found to be 

distorted square-pyramidal when exploring the FES but trigonal-bipyramidal when 

performing ab initio geometry optimizations on the PES. Such discrepancy evidences a strong 

influence of the surrounded solvent molecules on the structural geometry of DClCl
22. THF 

exchange on the Mg atom may occur through addition of one THF to form an octahedral 

species.77-79 These last transient structures are very short-lived, and thus have not been 

included in Figure 8.  

Desolvation of DClCl
22 by one THF molecule yields an asymmetrical dinuclear complex 

(DClCl
12) with tetrahedral and pyramidal-trigonal geometries for Mg1 and Mg2, respectively. 

This tri-solvated species can lose one THF molecule to produce the di-solvated (DClCl
11), 

which was found to be the most stable species in solution. The tetrahedral coordination of Mg 

is also the one preferred in the solid state as shown by reported crystallographic structures of 

related Mg2X2R2 species.28, 80 The difference in energy between DClCl
11 and the least stable 

intermediate DClCl
12 is 2.7 kcal/mol with an activation energy barrier of less than 5 kcal mol-1 

(Figure 4). Therefore, all DClCl
11, DClCl

12 and DClCl
22 species are expected to coexist and 

undergo interconversion at room temperature.  
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Figure 8. Intermediates involved in the Schlenk equilibrium according to dynamic simulations. 

Arrows indicate the chemical transformations along the main pathway leading from monomeric 

reactants to products (inside solid squares). The most stable dichloride and methyl-chloride bridged 

dinuclear species are inside dashed squares.  

 

Interestingly, not all species favor the Mg-Cl bond cleavage required for the Cl/Me ligand 

exchange. Analysis of the Mg-Cl bond distances in DClCl
11, DClCl

22 and DClCl
12 (Figure 5a) 

shows that the formation of mono-chloride-bridged species takes place preferentially from 

DClCl
12. NBO analysis indicates that the asymmetric solvation of DClCl

12 favors the Mg2-Clax 

bond cleavage (step (ii) in Figure 8). In this complex the higher solvation on Mg2 weakens the 

Mg2-Cl bond, while the lower solvation on Mg1 makes it prone to accept an extra anionic 

ligand during the Cl/CH3 exchange process. Analysis on several trajectories, as the one 
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represented in Figure 9, reaffirms that the chloride involved in the cleavage is the one located 

in axial position of Mg2 (Figure 5b). The mono-bridged species generated by the Mg-Cl bond 

cleavage (snapshot 2 in Figure 9) has a short-lived reaction time and rapidly evolves into 

methyl-chloride bridged structures (DClMe). The methyl group occupying the bridging position 

comes from Mg1, as shown in snapshot 3, this is consistent with the higher electron density on 

MgCl(THF)(µ-Cl) fragment compared to Mg(THF)2(µ-Cl) calculated for the structure shown 

in snapshot 2. 

 

 

 
Figure 9. Snapshots for the methyl transfer reaction in DClCl

12 (Mg1 on the left hand side and Mg2 on 

the right for all snapshots): 1) initial DClCl
12 structure, 2) Transition State of the transmetallation 

reaction, 3) formation of DClMe
12, 4) solvent loss to form DClMe

11, 5) solvent addition to form DClMe
21, 

and 6) DClMeTHF
11. The atoms for the Grignard reagent and the coordinating THF molecules are 

depicted in balls and/or sticks and colored according to standard color codes. Selected neighboring 

solvent molecules are drawn in thin lines.  

 

The first DClMe species generated after the Mg-Cl bond cleavage is the DClMe
12 complex 

(snapshot 3 in Figure 9). This species is however the least stable of the four solvation states 

observed by AIMD, with a free energy difference of +5 kcal mol-1 (Figure 4) over the most 

stable solvation structure. As in the case of DClCl species, the most stable DClMe complex is the 

di-solvated DClMe
11, in which both Mg atoms have tetrahedral coordination geometry. 
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However, DClMe incorporates other tri-solvated species, DClMeTHF
11 and DClMe

21, which are 

both 3 kcal mol-1 above DClMe
11. Exchange between these species has low activation energy 

barriers (smaller than 4 kcal mol-1) and involves either the addition of an external THF at the 

bridging position (DClMe
11 → DClMeTHF

11) or at the terminal position of Mg1 (DClMe
11 → 

DClMe
21). Internal rearrangement of THF from bridging to terminal is also observed 

(DClMeTHF
11 → DClMe

21) with even lower energy barrier (<0.5 kcal mol-1). The higher stability 

of DClMe
21 compared to DClMe

12 is consistent with the higher solvation of the most 

electrophilic Mg atom (Mg1), i.e. the one with terminal chloride. 

In order to form the final products, both Mg2-Cl and Mg1-CH3 bonds need to be cleaved. This 

however does not take place simultaneously but consecutively, and solvation plays an 

important role. Since Cl is a much better ligand than CH3,28 the Mg-CH3 bond is the first to be 

broken. Analysis on the orientation of the formal lone pair in the bridging methyl ligand 

shows that at equal solvation of Mg atoms in DClMe, µ-CH3 is more strongly bonded to Mg1 

than to Mg2 because Mg1 is more electrophilic (Figure 7). This preference is however 

modified by increasing the solvation of Mg1 relative to Mg2. Thus, in DClMe
21 the methyl is 

equally bonded to Mg1 and Mg2. In addition, in this species, the axial position occupied by the 

bridged methyl group in the coordination sphere of Mg1 also favors the Mg1-CaxH3 bond 

cleavage. Increase in solvation of Mg1 thus yields the pre-product of the Schlenk equilibrium 

(P12 and Minimum E in Figure 3), consisting of a Mg1Cl2 species bridged by way of a single 

chlorine group to Mg2(CH3)2. Increase in solvation of both Mg centers is expected to favor the 

final release of the mononuclear MgCl2 and Mg(CH3)2 products. The dissociation energy 

from P12 to CH3MgCl(THF)2 and the most stable MgCl2(THF)3 has been estimated to be -8.7 

kcal mol-1 in this study. (see Figure S4 for further details).  

Despite their relative low abundance in solution, as also experimentally observed,22  

formation of dimeric adducts is key to the evolution of the Schlenk equilibrium reaction. The 

reaction pathway identified in this study highlights the crucial role of the solvent in assisting 

the Cl/Me exchange in the Schlenk equilibrium. Most importantly, it shows that the tetra-

coordinated Mg species proposed in most computational studies 28, 81-82 are indeed the most 

stable structures but are not on the reactive pathway. Instead, asymmetric solvation on Mg 

atoms is needed to promote the Mg-Cl and Mg-CH3 bond cleavage to go from MgCH3Cl to 

Mg(CH3)2 and MgCl2. These tetra/pentacoordinated Mg dimers (DClCl
12 and DClMe

21) are 

transient intermediates that interchange with the most stable solvation structures at room 

temperature. In addition, the bridging ligand involved in the bond breaking process is located 

always in the axial position of the penta-coordinated Mg atom. This detailed information on 
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the Schlenk equilibrium mechanism will be useful for a better understanding of the reactivity 

of the Grignard reagents. In addition, this study may help to better understand other 

transmetallation processes, such as those involved in the Kumada and Negishi cross-coupling 

reactions,4, 83-84 85-86 which are also assisted by solvent.  

  

Conclusion 

The ab initio molecular dynamics study of the Schlenk equilibrium reaction, in which two 

molecules of CH3MgCl exchange methyl and chloride groups to yield Mg(CH3)2 and MgCl2, 

showed how the ether solvent (THF here) has a crucial role in assisting the reaction. Although 

coordination of the solvent is needed for stabilizing the various mono and dinuclear Mg 

complexes, the stabilizing effect is not the only factor at work.  

The reaction goes via the formation of a dinuclear (CH3)Mg(µ-Cl)2Mg(CH3) intermediate 

whose most stable solvated form (with a single THF at each Mg) is unreactive. The 

chloride/methyl exchange is promoted by making the two Mg electronically different. The 

calculations show that these differences are created by different solvations of the two Mg 

centers. The cleavage of the Mg-Cl bond and associated shift of the methyl group from 

terminal to bridging position is assisted by increasing the solvation at the Mg involved into 

the bond cleavage, while keeping the other Mg less solvated.  

A similar process occurs at the dinuclear (CH3)Mg(µ-CH3)(µ-Cl)MgCl: the cleavage of the 

bond between Mg and the bridging CH3 group to form solvated Mg(CH3)2 and MgCl2 

requires the chloride rich Mg atom to be more solvated than the methyl rich Mg one. 

Increasing solvation at one Mg favors bond cleavage while decreasing solvation favors the 

formation of new terminal bonds.  

The species selected by the dynamics to be on the reaction pathway are not necessarily 

minima on the potential energy surface, which emphasize the need for the former method. 

Our findings highlight the need of including explicit solvent dynamics in the modelisation of 

such reactions, since this is crucial in allowing the Cl/CH3 groups exchange to occur with a 

low energy barrier.  

 

Associated Content 
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Abstract

We investigated the competition between the nucleophilic addition and the radical pathway

for the Grignard reaction by computational modelling. Radical formation energies for com-

plexes with different substrates were estimated by density functional theory after benchmark-

ing over coupled cluster data. The nucleophilic attack mechanism was investigated by ab initio

molecular dynamics in explicit tetrahydrofuran solvent. The initial step of the radical reaction

involves binding of the substrate to the magnesium and the subsequent release of a radical or-

ganic group. Regardless of the nature of the substrate and the solvation of the magnesium, the

unpaired electron localizes on the substrate. We found that the nucleophilic addition is favored
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for alkyl-carbonyl species, while the radical mechanism becomes energetically favorable for

extended aromatic moieties. We further determined that the nucleophilic addition is promoted

by the fraction of the dialkyl-magnesium species produced by the Schlenk equilibrium. The

identification of competitive mechanism that are selected by the nature of the substrate can

help the design of future metalloorganic reactions and catalysts in the homogeneous phase.

Introduction

The Grignard reaction is a fundamental, text-book, process used in organic synthesis to promote

the formation of carbon-carbon bonds.1 The reaction involves the initial synthesis of the Grig-

nard reagent, a magnesium-organic compound of general formula RMgX where R is a organic

residue and X is a halogenous element (typically, Cl, or Br), and the subsequent reaction with an

electrophilic species (most prominently, carbonyl groups: R’C=OR”) to form adducts of general

formula RR’R”CO-MgX:

RMgX `R1R2C “ O Ñ RR1R2CO ´MgX (1)

The reaction occurs strictly in polar-aprotic solvents. Addition of water is used to hydrolyze

the product, yielding the corresponding alcohol.2

Despite the fact that the Grignard reaction has been known since more than one hundred years,

its characterization at a molecular level has remained elusive so far. Difficulties arise from the fact

that the same molecular structure of the Grignard reagent is complex, with several organometallic

species co-existing in solution according to the generalized Schlenk equilibrium:3

2RMgX è pRMgXq2 èMgR2 `MgX2. (2)

As a matter of facts, the experimental characterization of such species, as well as the identification

of the most reactive species for the Grignard equilibrium has resulted so far problematic.4
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The relative abundance of the various chemical species can be modulated by varying the con-

centration, the organic residue or the halide, and the temperature. Several computational and exper-

imental data available in the literature indicate that the equilibrium in equation 2 involves different

intermediate states for the dimer dependent on the choice of the organic compound, the halide, and

the solvent.5

The general understanding of the Grignard reaction (equation 1) points at a nucleophilic ad-

dition to an electrophilic substrate by a metal-activated nucleophilic carbon.6 In fact, experiment

with substrates characterized by aryl-conjugated carbonyl moieties yielded products that are not

fully consistent with a nucleophilic addition, while they could be interpreted as the outcome of

a radical-chain propagation mechanism. This was evidenced by the formation of pinacol struc-

tures in the reaction of benzophenone or quinones with Grignard reagent.7–10 A series of studies

by Ashby and co-workers further evidenced radical intermediates and further pointed at a possible

competition between the two mechanisms, influenced by several factors among which the nature of

the solvent, and the chemical characteristics of both the substrate and the residue. This competition

between radical and non-radical pathway for different organomagnesium cross-coupling reactions

could be demonstrated experimentally using chiral Grignard reagents.11 However, it has not been

possible to fully characterize the competing pathways on a molecular level.

Computer modeling is an excellent strategy to complement experimental data, providing clear

insights about the molecular details of chemical processes in very highly controlled conditions.

The constitution and reactions of Grignard reagents have been investigated in the past years by

different approaches including by second-order Møller-Plesset perturbation theory (MP2) 12,13and

density functional theory (DFT).5,14–16

Computer modeling has also been successfully applied17 to the study of the formation of the

Grignard reagent, for which a radical pathway has been established.18,19 Furthermore, computa-

tional studies have been used to investigate the character of the Grignard reaction on metallic sur-

faces using cluster models20 as well as using implicit solvation by dimethylether solvent16 using

DFT calculations.
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Recently, we have characterized in detail the Schlenk equilibrium for a model CH3MgCl Grig-

nard reagent dissolved in tetrahydrofuran (THF). We determined that multiple chemical species,

including, CH3MgCl, Mg(CH3)2, MgCl2, and higher-order aggregates, co-exists at room tempera-

ture. Moreover, we observed that, in the different compounds, the magnesium centers can accept

a variable number of THF in their shell of first ligands, and that local changes in solvation are

directly connected to the interchange between the chemical species at equilibrium. The accurate

determination of the chemical species present in a solution of Grignard reagent provides an excel-

lent starting point to investigate the Grignard reaction, and shed light on the conditions at which

the two nucleophilic or radical mechanisms may be preferred or co-exist.

Here, we employ quantum mechanical calculations and ab initio molecular dynamics to inves-

tigate the likelihood of different reactive paths for the Grignard reaction in the presence of different

substrates. We find that for highly conjugated systems such as fluorenone, that have the ability to

stabilize a radical, the radical pathway is preferred. For non-conjugated systems, such as acetalde-

hyde, a non-radical pathway via nucleophilic addition is preferred. We furthermore find that the

nucleophilic addition reaction shows a clear trend between the different species of the Schlenk-

equilibrium. We find that the most reactive species in THF solvent are of the kind Mg(CH3)2 and

Mg(CH3)2 ¨MgCl2.

Computational methods

Homolytic cleavage energies

Benchmarking studies Due to the large size of the systems under consideration in our study, we

employ DFT to determine the electronic structure of different chemical species. Different exchange

correlation (xc) functionals have been shown to yield discrepancies in the estimation thermochem-

istry and kinetics of chemical processes21 and binding energies.22 Therefore, we benchmarked the

performance of different xc functionals against CCSD(T) data.

We benchmarked the quality of DFT calculations using PBE,23 PBE0,24 B3LYP,25,26 M062X,27
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B97X28 and TPSSH29,30 exchange-correlation functionals (xc) in reproducing the homolytic C-Mg

bond cleavage energy with respect to coupled-cluster (CC) data. The benchmark energies were

computed over geometries optimized using the PBE0 functional for the system shown in Figure 1,

considering both the whole system, and the CH3¨ and RR’ClMg¨ fragments.

Mg

H3C

O Cl

O
H

H

Figure 1: Homolytic cleavage reaction that was used for calibration of the Exchange correlation
method takes place along the dashed line.

The reference CC energies were obtained using single, double and perturbative triple excita-

tions (CCSD(T)). CCSD(T) calculations were performed using the PTVZ basis set and frozen core

approximation, with an energy convergence cutoff to 10´9 Hartree. The calculations were carried

out using the CFOUR package.31 The DFT energies were obtained using the 6-31+G(d,p) basis set

using the Gaussian09 software package.32

Table 1 reports the homolytic dissociation energies of a model Grignard reagent bound to

formaldehyde. The M062X xc functional is the best in reproducing CC data, in particular, showing

a discrepancy not higher than 1.2 kcal mol´1 in the dissociation energy. Re-optimization of the

structures at the M062X level and consecutively obtaining the energy heightens the barrier by 1.7

kcal mol´1. The GGA PBE functional, whose reduced costs are necessary for the ab initio MD

simulations, still show a reasonable performance, even though it tends to underestimate dissocia-

tion energies by 4.2 kcal mol´1.
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Table 1: Homolytic dissociation energies of a model Grignard reagent bound to Formaldehyde
evaluated using different levels of theory according to Figure 1.

Functional Basis Set ∆E [kcal mol ´1]
CCSD(T) DZ 43.64
CCSD(T) TV 41.44
PBE0 6-31(d,p) 34.59
B3LYP 6-31(d,p) 32.55
M062X 6-31(d,p) 42.69
B97X 6-31(d,p) 39.39
TPSSh 6-31(d,p) 32.48
PBE 6-31(d,p) 37.22

If not explicitly stated otherwise, all electronic structures following in this paper have been

optimized using the M062X functional and the 6-31 basis set. Dispersion forces were accounted for

using the D3 Grimme approximation.33 The calculations were performed in implicit THF solvent

using the SMD solvent model.34

Ab initio molecular dynamics

Monomeric species We built two different monomeric systems, containing each one molecule

of either CH3MgCl or Mg(CH3)2 surrounded by 41 molecules of tetrahydrofuran (THF) and one

molecule of acetaldehyde in a periodic box of dimensions 25.2 x 15.0 x 15.0 Å3. The initial

coordinates of THF were generated by 20 ps of ab-initio MD at the experimental density at room

temperature.35

Dimeric species The (MgCH3Cl)2 species were simulated in an orthorhombic periodic box of

dimensions 25.2 x 15.0 x 15.0 Å3, containing 41 THF molecules and one molecule of Acetalde-

hyde. Two systems that were obtained as equilibrium structures from our previous investigation36

were used as starting geometries.
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Figure 2: Example simulation Box. Grignard reagent and Fluorenone in CPK, solvent in Licorice
representation, the solvent hydrogen atoms are not shown in visualization.

Simulation parameters The electronic problem was solved by Density Functional Theory 37–39

using the Perdew-Burke-Ernzerhof exchange correlation functional (PBE).23 Kohn-Sham orbitals

were expanded over mixed Gaussian and plane-wave basis functions. The DZVP basis set for

first and second row elements, and a molecularly optimised (MOLOPT) basis set for the Chlorine

atoms were employed.40 The auxiliary plane-wave basis set was expanded to a 200 Ry cutoff.

The core electrons were integrated out using pseudopotentials of the Goedecker-Teter-Hutter type

(GTH). 41 Dispersion forces was accounted for using the D3 Grimme approximation.33 Ab initio

Molecular Dynamics simulations (AIMD) were run over the ground state potential energy surface,

with a time-step of 0.25 fs, optimising the energy gradient to a threshold of 10´5 au. All systems

were first relaxed for 15 ps in the microcanonical ensemble at a average temperature of 300 K.

Then, production runs were simulated in the NVT ensemble at 300 K. Relaxation at the target

temperature was first performed using canonical sampling/velocity rescaling (CSVR) thermostat

with a time constant of 10 fs until the temperature of the system oscillated around the target value.

Then, a Nosé-Hoover chain thermostat with a chain length of 3 and time constant 1 ps was used

for data production.42–44
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Trajectory analysis was performed using the tools available in the VMD 1.9.2 package. 45

Constrained Ab initio Molecular Dynamics In Constrained Molecular Dynamics (CMD) the

reaction coordinate was constrained using the Shake algorithm. The Lagrangian Multipliers of

the Shake Algorithm were collected every MD Step after equilibration and converged to a Normal

distribution with a steady mean value within 1ps of simulations. The activation energy was com-

puted by trapezoidal integration over the average Lagrangian multiplier from reactant to transition

state, identified as the point along the reaction coordinate at which the average constraint force is

zero. The reaction coordinate used for the investigation of the nucleophilic attack is the methyl

carbon-carbonyl carbon distance.

Results and Discussion

Homolytic bond cleavage

Reactivity trends for different substrates We investigated the change in the homolytic CH3-

Mg cleavage energy when different substrates are bound to the Grignard reagent. Specifically, we

compared formaldehyde, acetaldehyde, carbonyl flouride and fluorenone.
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A
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D

E

Organic Carbonyl A B C D E
Formaldehyde 45.1 -3.1 -14.8 33.4 30.3
Carbonyl Flouride 35.1 -6.4 -16.7 24.8 18.4
Acetaldehyde 51.3 -0.3 -13.6 37.9 37.7
Acetaldehyde/Mg(CH3)2 45.2 1.6 -9.3 34.3 35.9
Fluorenone 26.7 -2.2 -16.2 12.7 10.5

Figure 3: Free energies (∆G) for the monomeric Grignard reagent calculated according to the
reaction scheme above, reported are in [kcal mol´1]. In the Acetaldehyde/Mg(CH3)2 system the
chloride is replaced with a methyl group.

Figure 3 reports the free energies for the homolytic cleavage reaction for the various systems

computed as the difference between the change in the electronic energy and standard entropic

corrections. In all cases, our data show that the complex between the Grignard reagent and the

substrate coexists at room temperature with different solvation structures, yielding both a tetra-

hedral or pentahedral coordination for the Mg atom. On the contrary, the radical product exists

strictly in a tetrahedral form, with the pentahedral coordination at least 10 kcal mol´1 higher in

free energy for all species.

The presence of progressively more electron-withdrawing groups attached to the carbonyl

9



(CH3 ă H ă F) facilitates the release of the CH3¨ radical from Mg. The reaction is even more

facilitated by coupling the carbonyl to an aromatic moiety like in fluorenone.

Figure 4: Spin density of the homolytic cleavage product for (Top Left) Formaldehyde, (Top Right)
Carbonyl Fluoride, (Bottom Left) Acetaldehyde and (Bottom Right) Fluorenone.

Figure 4 reports the localization of the spin density on the carbonyl moieties for the four differ-

ent substrates. The presence of electron-releasing substituents forces a higher spin density local-

ization on the carbonyl moieity; on the contrary, fluorine atoms facilitate its delocalization. This

effect is prominent in fluorenone, where the unpaired electron is spread over the extended aromatic

system.
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O
Mg

Cl

OO

R

R

Organic Carbonyl Carbonyl
Formaldehyde 1.04
Carbonyl Flouride 1.04
Acetaldehyde 1.15
Fluorenone 0.60

Figure 5: Spin densities on the carbonyl carbon.

Nucleophilic attack

The energies reported in Figure 3 indicate that formation of a radical species is very unlikely for

non-aromatic substrates. On the contrary, binding to fluorenone makes a homolytic cleavage of the

C-Mg bond feasible for a relatively low energy. To determine the feasibility of the radical mech-

anism, we computed the activation energy for the competing nucleophilic attack pathway. The

reacting complexes were built from the structures of the Grignard reagent obtained in a previous

study,36 and are shown in Figure 6.

Mg Mg

Cl

Cl

CH3

OH3C

O

Mg Mg

Cl O

H3
C

O

Mg

H3C

O Cl

O

E

C DB

H3C

Cl

Mg Mg

Cl O

H3
C

O

H3C

Cl

Mg

H3C

O CH3

O

A

F

Mg Mg

Cl O

CH3
O

H3C

Cl
Mg

H3C

O CH3

O

G

O

Figure 6: Structures investigated using Constrained Molecular Dynamics. The arrows indicate the
path of nucleophilic attack investigated. The activation energy for the nucleophilic attack in each
of the structures is detailed in Figure 7.

Figure 7 reports the activation free energies computed by CMD for the different complexes.

We find that the more electron donating methyl ligands there are on the magnesium center, the
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lower the activation energy is for the nucleophilic attack. This trend in activation energy persists

for monomeric as well as dimeric Grignard reagent species. Furthermore, the nucleophilic attack

from a terminal ligand is preferred over the one from a bridging ligand (Figure 6). This behavior

confirms our previous study where it was shown that the free electron pair of the bridging methyl

group is shared between the magnesium centers and points away from the remaining ligands.36

System A B C D E F G
Activation Energy [kcal mol ´1] 6.6 8.7 12.9 22.6 13.1 6.4 14.6
TS distance [Å] 2.57 2.54 2.38 2.22 2.37 2.63 2.48
Distortion angle [o] 10.8 12.8 14.2 18.3 14.5 10.7 14.3

Figure 7: Dissociation energy, estimated TS distance and distortion angle obtained for the nucle-
ophilic attack for the structures in 6. The transition state distance was estimated by linear extrap-
olation of the forces obtained from CMD taken at intervals of 0.1 Å. The distortion angle is with
respect to the ideal geometry of a sp2 hybridized system.

Analysis of the TS geometry shows that as the more reactive species have a more reactant-like

transition state, with a longer C-C distance and a more planar geometry of electrophilic carbonyl

carbon. Comparing the same Grigard reagent structure, comparing different substrated (for exam-

ple,systems A - G) we find that for the most reactive acetaldehyde, the distortion angle is smaller

than for the bulkier fluorenone.

The nucleophilic attack is most probably catalyzed by monomeric Grignard reagents, as these

do not only show the lowest activation energy but also constitute the most abundant species in THF-

solvent.36 For example, structure F (Figure 6), which shows a comparable energy of activation with

respect to dimethylmagnesium, was found in our previous study to be energetically unfavored by

about 8 kcal mol ´1 with respect to monomeric geometries, and it is therefore significantly less

abundant in solution.
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Nucleophilic attack vs Homolytic cleavage

The determination of the preference for the nucleophilic attack over a radical mechanism for the

Grignard reactions depends on the relative height of the respective activation energies.

The homolytic bond cleavage energy represents the highest possible activation energy for a

radical reaction producing a free methyl radical in solution. In that case, this highly energetic

species is expected to recombine either to a free substrate, or to a substrate bound to a Grignard

reagent. In both cases, we find that the overall reaction is highly exothermic by „ -50 kcal mol´1.

(Figure 8):

Mg

CH3

O

O

+

CH3+
O

Mg

OO

Mg

H3C

O CH3

O

Mg

O CH3

O

+ CH3

O

O + CH3 O

H3C

CH3

H3C

1.

2.a)

2.b)

Mg
CH3

OO

CH3

+

Mg

O CH3

O

+ CH3

O

2.c)

Organic Carbonyl 1 2a 2b 2c
Acetaldehyde 37.9 -54 -21 -48
Fluorenone 12.7 -52 -10 -58

Figure 8: Energies (∆E) of the radical propagation pathway in [kcal mol´1].

In fact, a radical mechanism may require even lower activation barriers if the initial formation

of the radical is followed by a rapid recombination with the substrate within the same solvation

cage, avoiding the release of the relatively unstable free methyl radical.

13



System A B C E G
Radical dissociation energy [kcal mol ´1] 35.9 37.7 63.2 34.5 12.7
Non-radical activation energy [kcal mol ´1] 6.6 8.7 12.9 13.1 14.6

Mg Mg

Cl

Cl

CH3

OH3C

O

Mg Mg

Cl

Cl OH3C

OO

+
O

CH3+

Mg Mg

Cl

Cl

CH3

OH3C

O O

+

Mg Mg

Cl

Cl OH3C

O O

Figure 9: (Top) Dissociation and activation energy obtained for the radical and non-radical pathway
for the structures shown in Figure 6, exemplified in (Bottom) for structure E.

Regardless of the different Grignard reagent structures, the radical mechanism for an alkyl

carbonyl like acetaldehyde seems extremely unlikely. In fact, the activation energy for the radical

pathway is in all cases above 30 kcal mol´1. This contrasts the very favorable activation energy for

the nucleophilic addition, which can be as small as 6.6 kcal mol´1. We remark that the activation

free energies for the nucleophilic attack were computed by AIMD using the PBE functional, while

the radical formation energies were computed with the M062X one. For a better consistency

between the data, we estimated the total energy difference between the reactant and TS during the

nucleophilic attack using the two functionals, finding that, although the geometries are very similar,

PBE underestimates the barrier by „3.3 kcal mol´1 compared to M062X. This discrepancy is well

below the energy differences found between the two pathways, and thus it does not change the

qualitative picture.

For fluorenone, we find that the radical pathway is favored, even though the difference between

the relative barriers is less pronounced. The radical formation is in particular stabilised by the large
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delocalization of the unpaired electron over the conjugated π system, while the nucleophilic attack

is disfavoured by the necessary ditortion of the geometry of the carbonyl that needs to break the

same conjugation.

Concluding remarks

Our study confirm the hypothesis that the Grigard reaction may proceed both by a nucleophilic

addition and by a radical mechanism. We found that the preferences of either of the two mech-

anisms is associated to the nature of the substrate. In particular, extended aromatic moieties like

in fluorenone are crucial for the initial stabilization of an unpaired electron that can initiate the

radical cascade. In particular, they are in agreement with previous studies that have observed

radical formation in the Grignard reaction of aromatic ketones such as Benzophenone46 and Flu-

orenone.47 For non-aromatic carbonyls where the radical can be localized solely on the carbonyl

carbon, strongly negative inductive effects, for example by electronegative substituents, are needed

to lower enough the energy of the species. We furthermore found that the nucleophilic addition

reaction shows a clear trend between the different species present in the Schlenk-equilibrium.

Specifically, the most reactive species in THF solvent are Mg(CH3)2, CH3MgCl and Mg(CH3)2 ¨
MgCl2, respectively.

The presented data shed light on some complex mechanistic aspects of the magnesium chem-

istry in solution, and can provide solid ground for future studies on catalytic metalloorganic chem-

istry.
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Self-Assembly of α‑Tocopherol Transfer Protein Nanoparticles: A
Patchy Protein Model
Raphael Mathias Peltzer,† Hima Bindu Kolli,† Achim Stocker,*,‡ and Michele Cascella*,†
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0315 Oslo, Norway
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ABSTRACT: We describe the mechanism of self-aggregation of α-tocopherol
transfer protein into a spherical nanocage employing Monte Carlo simulations. The
protein is modeled by a patchy coarse-grained representation, where the protein−
protein interfaces, determined in the past by X-ray diffraction, are represented by
simplified two-body interaction potentials. Our results show that the oligomerization
kinetics proceeds in two steps, with the formation of metastable trimeric units and
the subsequent assembly into the spherical aggregates. Data are in agreement with
experimental observations regarding the prevalence of different aggregation states at
specific ambient conditions. Finally, our results indicate a route for the experimental
stabilization of the trimer, crucial for the understanding of the physiological role of
such aggregates in vitamin E body trafficking.

■ INTRODUCTION

α-Tocopherol transfer protein (α-TTP hereafter) is the liver
factor responsible for the retention of RRR-α-tocopherol (α-
tol), the active isoform of vitamin E, in the human body.1−3 α-
TTP solubilizes α-tol from the external leaflet of maturing
endosomal compartments, promoting its release into the
blood. Structural studies over the years4,5 indicate that α-TTP
is active as a monomer, similarly to other transporters of its
family.6−8 Unlike for retention, the mechanism(s) by which α-
tol is secreted into the blood and then absorbed into the target
tissues is at present not well understood. Possible pathways for
the secretion and blood transport of α-tol include enrichment
into the leaflets of the plasma membrane by a lipid-exchange
mechanism9,10 and transport into the blood by aggregating to
very-low-density lipoprotein vesicles.2 The absorption from the
blood into the target tissues is even less understood, but it
must imply some mechanism of recognition to bypass
endothelial barriers, like the blood−brain barrier or the
placenta.
The involvement of α-TTP into α-tol trafficking has not

been clearly defined. In a recent work, Arai and co-workers
have suggested that transfer of α-tol to the plasma membrane
is coupled to the extraction of phosphatidylinositol phosphates
(PIPs) from the same membrane by α-TTP.3 Interestingly,
they also suggested that lipid exchange at the plasma
membrane may involve higher order aggregates of α-TTP
than the monomers.3

Very recently, we provided structural evidence that upon
binding to α-tol, α-TTP acquires the tendency to oligo-
merize.11 The oligomerized proteins form stable, regular
spherical nanoparticles composed of 24 α-TTP units (α-
TTPS), which could be characterized by a series of methods,

including cryo-EM and X-ray diffraction (PDB: 5MUE and
5MUG).11 Thermal analysis demonstrated that α-TTPS is
thermodynamically stable; furthermore, oxidative conditions
enhance its stability by promoting the formation of 12 disulfide
bonds cross-linking different α-TTP units. X-ray crystallog-
raphy data of α-TTPS revealed a regular assembly of 24
monomers organized in a cubic symmetry. Each α-TTP unit is
located on one vertex of a cantellated cube, and it is involved in
two kinds of molecular contacts with four neighboring proteins
(Figure 1). The first interface builds around the C4 symmetry
axis of the assembly, and it is constituted by a patch of surface
amino acids that are exposed to the solvent in the native
monomeric folding of α-TTP. The second interface is
responsible for the assembly of α-TTP around the trimeric
C3 axis. This interface is located on the surface of the proper
SEC-14-like binding domain; in α-TTP, it is screened from the
solvent by the N-terminal helical domain. In α-TTPS, the
interfaces are accessible to the partner proteins thanks to the
unfolding of the first N-terminal helix, which is not detectable
in the corresponding X-ray structure. The partial unfolding of
the N-terminal helix is triggered by external conditions,
including binding to α-tol or interaction with negatively
charged lipids.11

α-TTPS shows selective and efficient transport properties
through in vitro models of endothelial barriers,11 making it a
potential candidate as one of the physiological route for the
delivery of vitamin E into the brain.12,13 As much as
oligomerization of α-TTP is crucial for its transfecting
properties, its mechanistic aspects remain obscure. In
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particular, chromatographic data showed that when the
monomeric form is the most stable aggregation state for α-
TTP, this is at equilibrium with a small presence of low-weight
dimeric or tetrameric aggregates. On the contrary, when the
aggregation into the high weight oligomer is triggered, the only
species present in the solution is monomeric α-TTP or regular
α-TTPS constructs, whereas no other low-, middle-weight
assemblies coexist in detectable concentration.11

In the present study, we investigated the formation of α-
TTPS using Monte Carlo (MC) simulations of a toy patchy
model of α-TTP. Molecular simulations using patchy models
are proven to be very effective in understanding the nature of
self-assembly in systems like patchy colloids, soft function-
alized nanoparticles, and biomolecules.14−17 In particular,
models with anisotropic and highly directional interacting
patches are particularly suited to describe protein assem-
bly.18−23

■ COMPUTATIONAL METHODS
Computational Model. The patchy model for one α-TTP

consisted of one hard sphere, with four interaction sites (IS)
located on its surface (Figure 1). The relative orientation of the
IS was chosen to mimic the geometric organization of α-TTPS.
Interactions were imposed between ISA and ISB and between
ISC and ISD types, consistently with the experimental structure
of α-TTPS.
The interaction potentials for the two IS pairs were

described by toy potential wells of depth EA/B = u, EC/D =
3u (u being an arbitrary unit of energy), dependent on both
the distance between the IS and the relative orientation of the
proteins. The initial 1:3 ratio between EA/B and EC/D was
calibrated on an estimate of the dimerization free energies from
atomistic models using a standard thermodynamic cycle,24

computing the solvation free energy of individual and dimeric

structures solving the linearized Poisson−Boltzmann equation
using the APBS software24 and the binding energy in vacuo
using the Amber force field.25 Protein dimers were
extrapolated from the X-ray structure of α-TTPS (PDB:
5MUE).11

The four IS are identified by four vectors with origin in the
center of the hard sphere and ends in
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where R = 2 nm is the radius of a hard sphere with its center in
O(0,0,0).
The potential energies between the ISA−ISB and ISC−ISD

couples are described by the following well potentials
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where r is the IS−IS distance, rcut = 0.2 R is the maximum
range of the interaction. cos ψ, cos ϕ, and cos θ are defined
from the scalar multiplication of the normalized vectors as in
Figure 2. The angular dependency is necessary to model both
the chirality of the protein and that protein binding occurs over

Figure 1. Coarse-grained model of α-TTPS. Top: (left) In the native
α-TTPS, any monomeric α-TTP (gold spot) is in contact with four
other proteins along the edges of a cantellated cube (top right).
Bottom: α-TTP is described as a sphere with four interaction sites
(IS) corresponding to the protein−protein contacts in α-TTPS.

Figure 2. Normalized vectors used to define the angular dependency
of the interaction energy. cos ψ = v1·v2, for any A/B or C/D
interaction (green arrows); cos ϕ = w1·w2 for any A/B interaction
(top panel, red arrows); cos θ = n1·n2, for any C/D interaction
(bottom panel, blue arrows).
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an extended surface that requires a well-defined orientation of
the two partners.
System Setup. We simulated a system having N = 216

particles at thermal equilibrium. The protein particles were
initially distributed uniformly in a periodic cubic simulation
box of edge 24.625 R (where R is the radius of the protein),
corresponding to roughly the experimental concentration at
which α-TTP aggregation is observed.11 The accessible
conformational space in the canonical NVT ensemble was
explored using a Metropolis Monte Carlo (MC) algorithm.26

Random moves included the rotation or translation of the
single particles or whole clusters of bound particles.27−29 A
bond between two particles was assumed to exist if the
distance between the corresponding interaction sites was less
than 0.2 R. Two particles were considered to belong to same
cluster if they were connected by a chain of bonds.30

Rotational moves made use of quaternion representation of
the particle’s orientation, which was modified by a smaller
random orientation and then renormalized.27,28

The canonical ensemble was sampled at different values of
temperature to determine thermodynamic regimes at which
different α-TTP aggregates exist. All of the simulations at
different temperatures started from a random configuration of
the proteins in the box. Simulations were organized in cycles,
each cycle consisting of a number of attempted particle moves.
Typical equilibration runs consisted of (6−9) × 106 MC cycles
and were followed by a production run of additional 3 × 105

MC cycles, during which averages of energy and cluster
abundance were calculated. Convergence of the results was
tested by evaluating both the convergence of the expectation
value of the energy and comparing the variance to the typical
short time (1000 steps) energy fluctuations at a given
temperature over the last 6 × 105 MC cycles.
The acceptance probability for the single particle moves like

translation or rotation was evaluated according to

β
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Here, P is the acceptance probability, Ei is the initial energy,
and Et is the energy after the test step. β is the reciprocal
thermodynamic temperature of the system. The cluster moves
were implemented following the early rejection scheme.27

All results here are presented in reduced units: U* = U/u
and T* = kBT/u for the inner energy and the temperature of
the system.
Trajectory analysis was performed using the tools available

in the VMD 1.9.2 package.31

■ RESULTS AND DISCUSSION
In a first set of MC runs, we investigated the existence of α-
TTP aggregates when only the ISA/B interface is active. This
setup mimics the experimental conditions at which the N-
terminal region is folded and the ISC/D is not exposed to the
solvent. The top panel of Figure 3 shows the relative
abundance of α-TTP aggregates as a function of the thermal
energy. At high temperatures, only monomeric species are
present. At around T*u = 0.09 EAB, we observed the
appearance of low-weight aggregates, mostly tetramers, with
also a non-negligible presence of trimers and dimers. Lowering
the temperature stabilizes the tetrameric packing, which
corresponds to the aggregation state of four α-TTP proteins
around the C4 symmetry axis in α-TTPS (Figure 1). Higher-

molecular-weight structures, for example, linear chainlike
structures along sequences of ISA/B contacts were not observed,
as they are forbidden by the chirality condition on the
interaction energy, which only allows the formation of ringlike
tetramers.
In a second set of MC simulations, both the ISA/B and ISC/D

interactions were active. This setup mimics α-TTP with an
unfolded N-terminus. In this case, we observed three
temperature regimes at which distinct aggregation states
appear (Figure 3 (bottom)). In the high-temperature range
(T* > 0.25), only α-TTP monomers were present. In the
narrow (0.10 < T* < 0.25) region, we detected the formation
of trimeric species (α-TTP3), whereas for (T* < 0.12), the
systems rapidly evolved in high-weight aggregates (α-TTPS,
Figure 6).
The trimeric phase includes aggregates built along the ISC/D

interface. In fact, α-TTP3’s are stable in a temperature range at
which the thermal energy is too high to allow the formation of
A/B contacts. The structure of α-TTP3 corresponds to the
assembly of three α-TTP proteins around the C3 axis of α-
TTPS. The high-weight aggregates appearing for (T* < 0.12)
are constituted by oligomerization of α-TTP3, up to α-TTPS by
formation of ISA/B contacts.
During the MC runs, we observed a marginal degree of

polydispersion especially near the transition temperatures
(Figure 3). Nonetheless, the profile of the energy as a function
of the temperature shows two clear sigmoidal jumps, indicating
the presence of two distinct first-order phase transitions from
α-TTP to α-TTP3 to α-TTPS (Figure 4).
Oligomerization of α-TTPS begins at a higher temperature

(T* = 0.12) than the one characterizing α-TTP aggregation
when only ISA/B is active (T* = 0.07). In fact, α-TTP3
dimerization involves binding over two ISA/B contacts,
producing a hexameric structure centered around a C2
symmetry axis corresponding to one of the C2 axes of α-

Figure 3. Aggregation states of α-TTP (α-TTPn) as a function of the
reduced temperature T*: (top panel) when only the ISA/B interface is
active or (bottom panel) when both the ISA/B and ISC/D interfaces are
active.
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TTPS. Simultaneous formation of two ISA/B interactions is
facilitated by the preorganization of the interaction sites along
the edges of the rigid α-TTP3.
The cooperative effect of the ISA/B onto the binding of α-

TTP3 is responsible for the absence of intermediate weight
aggregates between α-TTP3 and α-TTPS. Practically, the
assembly of α-TTPS may be schematically seen as the
progressive dimerization of α-TTP3, α-TTP6, and α-TTP12
over two, four, and eight ISA/B contacts (Figure 5). Below the
critical temperature that allows the first dimerization of α-
TTP3, further assemblies involve increasingly larger number of
ISA/B interactions, yielding α-TTPS.

The existence of a region of thermodynamic stability for α-
TTP3 depends on the relative magnitude of EA/B versus EC/D.
To verify that, we ran one additional set of MC simulations on
a system where EA/B = 1.5 u. In this case, we expected the
critical temperature for the formation of α-TTP3 to be very
similar to that of α-TTP3 dimerization. In fact, we observed
only one sigmoidal profile of the U* vs T* plot, indicating the
coalescence of the two phase transitions into one (Figure 4)
and a direct aggregation from α-TTP to α-TTPS.
Although our MC runs depict the clear tendency of the

system to form α-TTPS, statistically, we obtained the formation
of imperfect spherical complexes with an average aggregation
number of 20.2. The presence of defects is visible from the
average energy per protein reported in Figure 4, which is
always larger than the ideal value of -4u even for low values of
the thermal energy. The formation of defectuous α-TTPS
assemblies is due to convergence issues related to the
appearance of kinetically trapped states at lower temperatures.
These states are dominant in MC runs at values of T*u ≪
EA/B, which yielded poorly aggregated structures, with energies
consistently higher than the best organized α-TTPS-like
structures found at higher values of the temperature.
Improvement of the sampled structures at T* ⩽ 0.06 was
obtained by applying 30 cycles of simulated annealing, between
T* = 0.07 and the target temperature. In this case, we could
observe the formation of more regular α-TTPS structures with
aggregation number ≈ 23.
Overall, our data are in optimal agreement with the native

gel electrophoresis experiment reported in ref 11. In particular,
natively folded α-TTP, which can oligomerize only through the
A/B interface, showed the predominance of a monomeric
form, with residual presence of low-weight aggregates (dimer,
tetramer, Figure 3). On the contrary, after triggering
aggregation by unfolding of the N-terminus, the proteins
assembled into stable α-TTPS, which showed no tendency to
disaggregate back into lighter oligomers in further incubation
tests over a time window of 24 h.11 Thus, the experimental
condition of the real system would correspond to the region of
T* ≈ 0.06−0.08 in our toy system, where the folded state is
mostly monomeric, whereas the partially unfolded state yields
almost pure α-TTPS (Figure 6).
Apart from α-TTP and α-TTPS, α-TTP3 is another

oligomerization state for which, when ISC/D is active, there
exists a region of thermodynamical stability. The nature of α-
TTP3 as a true thermodynamic stable aggregate is confirmed
by a diverging specific heat in correspondence of the boundary
transition temperatures T* ≈ 0.11, 0.18 (Figure 4, inset),
which is a clear indication of the presence of two separate
phase transitions. Experimentally, native α-TTP rapidly evolves
into α-TTPS, indicating that ambient thermodynamic con-
ditions fall in the region of stability of the phase diagram for α-
TTPS; nonetheless, α-TTP3 should be the dominating species
in an intermediate region at higher temperature. The
narrowness of such a region depends on the relative strength
of ISA/B and ISC/D.
According to our results, point mutations at the surface of

the protein that either weaken the ISA/B interaction or,
alternatively, strengthen the ISC/D interaction would both yield
an enlargement of the region of stability for α-TTP3. In our
previous study, the analysis of the α-TTPS protein−protein
interfaces at the 4-fold symmetry revealed hydrophobic contact
areas that are mostly responsible for binding (Figure 7).11

Introducing specific point mutations of these key residues can

Figure 4. Inner energy per protein U*/N and specific heat cV* (inset)
as a function of the reduced temperature for the system with both
active ISA/B and ISC/D (continuous line). The dotted line was
obtained by simulated annealing starting from converged data at T* =
0.07. The dashed lines report the same data for the system with EA/B =
1.5 u.

Figure 5. Oligomerization of α-TTP3 (blue triangle). Each
oligomerization step involves the formation of at least two ISA/B
contacts. Newly formed contacts are represented by dashed lines.
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have stark impact on particle assembly. Any disruptive
mutation, for example F165R, where a positively charged
residue is introduced into the hydrophobic patch through site-
directed mutagenesis, should weaken the cooperative effects of
the ISA/B. In this way, it should be possible to inactivate
progressive dimerization, favoring instead α-TTP3 as the
dominating species.
Interestingly, partial α-TTP aggregation is not strictly bound

to the unfolding of the N-terminus. Rather, low-weight
aggregates of folded α-TTP can be formed by binding through
the natively solvent-exposed A/B interface. The transition from
monomers to A/B dimers or tetramers is determined by the
balance between the A/B binding energy and the dimerization

entropy loss. In solution, this balance is in favor of the
monomeric species. Nonetheless, external factors like pre-
organization of the monomers on a surface may favor the
formation of such oligomers. Data by Arai and co-workers3

reported that a mixture of α-TTP, α-tol, and lipid fractions
containing different PIPs, such as PI(3,4)P2 or PI(4,5)P2,
induced the formation of α-TTP tetramers. In this study, also
crystals of such ternary mixtures were analyzed by X-ray
crystallography at 2.6 or 2.0 Å resolution. Superposition of the
open (PDB: 1OIZ), closed (PDB: 1OIP), and PI(4,5)P2-
bound (PDB: 3W68) structures revealed a semiopened mobile
gate conformation in the ternary structure of α-TTP.3 It was
also shown that such ternary complexes possess intermem-

Figure 6. Top: Aggregation states of α-TTP at different conditions. (A) Monomeric dispersion at T* = 0.27; (B) aggregation of low-weight
oligomers at T* = 0.04, for the system with only active ISA/B; (C) system with all active IS’s at intermediate T* = 0.13, where trimers begin to form;
(D) same system at T* = 0.07, characterized by formation of α-TTPS. Bottom: phase diagram with dominating species at different conditions of
temperature and folded state. The region between 0.06 and 0.11 T* corresponds to the experimentally observed behavior, with either properly
folded monomers, or assembled α-TTPS.
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brane transfer activity in vitro when using donor or acceptor
liposomes doped with PIPs. Neither α-TTP3 nor α-TTPS
aggregates were reported in this study. This is in accordance
with our previous observations that aggregation into spherical
particles occurs only when α-tol is bound to α-TTP with the
mobile gate being in its fully closed state and subsequent
unfolding of the N-terminus has unmasked the trimeric
interaction interface of α-TTP.

■ CONCLUDING REMARKS
Our model provides a description of the thermodynamically
stable aggregation states of α-TTP that is consistent with
experimental data. We report the existence of a metastable low-
weight oligomerization state (α-TTP3) that is key to the fast
and regular assembly of α-TTPS.
Expression of functional mutants with different assembling

properties should be feasible by minimal modifications of the
native sequence. Studies by Kortemme et al.32 have shown in
other systems that in general a single mutation is sufficient to
redesign functional protein−protein interfaces and thus alter
specificity. Interestingly, self-assembly into a similar spherical
homo-multimer structure composed of 24 monomers has been
reported in ferritin, an evolutionarily unrelated protein than α-
TTP.33 In a very recent study, Dmochowski and co-workers
showed that a homo-dimeric state represents a common
intermediate during protein cage assembly of the 24-meric
ferritin and that the dimer/24-mer balance can be
experimentally altered by introducing single positive charges
at sites along the dimer−dimer interface.34 It is important to
notice that even small variations in the binding affinity can
have a very large impact on the assembling process, due to the
cooperativity effects taking place during the assembling, as
evidenced in the present study.
Functional low-weight oligomers, such as α-TTP3, may play

a crucial role in transcytosis through endothelial membranes.
Our former transfection studies11 showed that the transcytotic
flux does not follow a diffusive regime, with larger α-TTPS
transfecting at a faster rate than smaller monomeric α-TTP. In
fact, the delay observed in the α-TTP flux may imply that
aggregation of a minimal unit larger than the monomer is
required to activate the transport. Further studies introducing
disruptive mutations at the trimeric or tetrameric interfaces
could help the understanding of the assembly kinetics and
thermodynamics at different physiological conditions. Most
importantly, they may lead to the identification of the minimal

biologically active units that are active for the transfection
through the endothelium, a crucial step toward the engineering
of these protein for targeted drug delivery.
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